K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Ta có hình vẽ: O C B A D E 1 2 1 2

20 tháng 12 2016

a) Xét hai tam giác OAD và OBC :

OA = OB ( gt )

OC = OD ( gt )

O là góc chung

=> tam giác OAD = OBC ( c.g.c)

b) Ta có :

A1 + A2 = 180

B1 + B2 = 180

mà A1 = B1 ( vì tam giác OAD = OBC )

=> A2 = B2

Xét hai tam giác ACE và tam giác BDE :

^C = ^D ( tam giác OAD = OBC )

A2 = B2 ( cmt )

ta có : OC= OA + AC

OD = OB + BD

mà OA = OB ( gt )

OC = OD ( gt)

=> AC = BD

=> tam giác ACE = BDE ( g.c.g )

a: Xet ΔOAD và ΔOCB có

OA=OC

góc O chung

OD=OB

=>ΔOAD=ΔOCB

=>AD=CB

b: Xét ΔEAB và ΔECD có

góc EAB=góc ECD

AB=CD

góc EBA=góc EDC

=>ΔEAB=ΔECD

16 tháng 2 2023

ý c đâu ạ

https://hoc24.vn/cau-hoi/cho-goc-nhon-xoy-lay-diem-ab-thuoc-tia-ox-sao-cho-oa-ob-lay-diem-cd-thuoc-tia-oy-sao-cho-oaob-lay-diem-c-d-thuoc-tia-oy-sao-cho-ocoa-od.7621651044223

có ng trả lời cho bn rùi mà

17 tháng 2 2023

nhưng thiếc ý c

29 tháng 1 2021

mình cần câu trả lời gấp sắp toang rồi cô kiểm tra

27 tháng 1 2022

a) 

ΔOAD và ΔOCB có:

      OA = OC (gt)

      Góc O chung

      OD = OB (gt)

⇒ ΔOAD = ΔOCB (c.g.c)

⇒ AD = BC (hai cạnh tương ứng).

27 tháng 1 2022

c) Ta có: 

ΔEAB=ΔECD

nên EB=ED

Xét ΔOEB và ΔOED có 

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED

Suy ra: BOE=DOE

hay OE là tia phân giác của góc xOy

21 tháng 9 2023

Tham khảo:

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)

22 tháng 12 2021

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{O}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

22 tháng 12 2021

\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)

20 tháng 11 2016

Chép lại đề: (vì đề của bạn có chút sai sót)

Cho \(\widehat{xOy}\) khác góc bẹt. Lấy A, B thuộc Ox sao cho OA < OB. Lấy C, D thuộc Oy sao cho OC = OA; OD = OB. Gọi E là giao điểm của AD và BC. CMR:

a, AD = BC

b, Tam giác AEB = tam giác CED

c, OE là tia phân giác của \(\widehat{xOy}\)

Ta có hình vẽ:

a/ Xét tam giác OAD và tam giác OBC có

OA = OC (GT)

\(\widehat{O}\): góc chung

OB = OD (GT)

Vậy tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AEB và tam giác CED có:

\(\widehat{B}\)=\(\widehat{D}\) (vì tam giác OAD = tam giác OBC) (1)

OA = OC; OB = OD => AB = CD (2)

Ta có: \(\Delta\)OAD = \(\Delta\)OBC

=> \(\widehat{OAD}\)=\(\widehat{OCB}\) (2 góc tương ứng) (*)

Ta có: \(\widehat{OAD}\)+\(\widehat{DAB}\)=1800 (kề bù) (**)

\(\widehat{OCB}\) + \(\widehat{BCD}\) = 1800 (kề bù) (***)

Từ (*), (**), (***) \(\Rightarrow\)\(\widehat{DAB}\)=\(\widehat{BCD}\)(3)

Từ (1), (2), (3) => tam giác AEB = tam giác CED (g.c.g) (đpcm)

c/ Xét tam giác OBE và tam giác ODE có:

OB = OD (GT)

OE: cạnh chung

BE = EC (vì tam giác AEB = tam giác CED)

Vậy tam giác OBE = tam giác ODE (c.c.c)

=> \(\widehat{BOE}\)=\(\widehat{DOE}\) (2 góc tương ứng)

=> OE là phân giác góc xOy (đpcm)

Vậy OE là tia phân giác \(\widehat{xOy}\)

29 tháng 8 2021

undefined

a: Xét ΔOAD và ΔOCB có 

OA=OC

\(\widehat{COB}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=BC

b: Ta có: ΔOAD=ΔOCB

nên \(\widehat{OAD}=\widehat{OCB}\)

mà \(\widehat{MAB}=180^0-\widehat{OAD}\) 

và \(\widehat{MCD}=180^0-\widehat{OCB}\)

nên \(\widehat{MAB}=\widehat{MCD}\)

Xét ΔMAB và ΔMCD có 

\(\widehat{MAB}=\widehat{MCD}\)

AB=CD

\(\widehat{MBA}=\widehat{MDC}\)

Do đó: ΔMAB=ΔMCD