Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: ΔOMN cân tại O
mà OP là đường phân giác
nên P là trung điểm của MN
a: Xét ΔMOP và ΔNOP có
OM=ON
\(\widehat{MOP}=\widehat{NOP}\)
OP chung
Do đó: ΔMOP=ΔNOP
b: Ta có: ΔMOP=ΔNOP
Suy ra: PM=PN
hay P là trung điểm của MN
c: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: P là trung điểm của MN
nên P nằm trên đường trung trực của MN(2)
từ (1) và (2) suy ra OP là đường trung trực của MN
hay OP\(\perp\)MN
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB
a) ta có \(OP+PQ=OQ\)
\(OM+MN=ON\)
mà \(OP=OM;PQ=MN\)
\(\Rightarrow OQ=ON\)
Xét \(\Delta NOPvà\Delta QOMcó\)
\(OP=OM\) ( giả thiết )
\(\widehat{QON}\) là góc chung
\(OQ=ON\) (chứng minh trên)
\(\Rightarrow\Delta NOP=\Delta QOM\left(c-g-c\right)\)
vậy \(\Delta NOP=\Delta QOM\)
b) tự làm nhé
a: Xét ΔOCA và ΔOCB có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOCA=ΔOCB