Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOC và ΔBOC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó:ΔAOC=ΔBOC
b: Ta có: ΔAOC=ΔBOC
nên CA=CB và \(\widehat{OCA}=\widehat{OCB}\)
hay CO là tia phân giác của góc BCA
a) Xét hai tam giác AOC va BOC, có:
OA=OB(gt)
góc OAC= góc COB
OC cạnh chung
=> Tam giác OAC= Tam giác OBC(c.g.c)
b) Vì ai tam giác OAC và OBC bằng nhau( theo câu a)
=> AC=BC
Tương tự ta có:
Góc ACO= góc BCO
=> CO là tia phân giác của góc ACB
c) Vì: góc OCA= OCB( theo câu b) Và góc ACF= ECB( góc đối đỉnh) => ACO+ACF= OCB+BCE
=> Goc OCF= OCE
Xét ai tam giác FOC và EOC có:
góc FOC= EOC
OC là canh chung
OCF= OCE
=> tam giác FOC= tam giác EOC(g.c.g)
=> OF= OE
Tự vẽ hình nha bạn
1)
a)xét tam giác AOB và COE có
OA=OC(GT)
OB+OE(GT)
AB=EC(GT)
Suy ra AOB=COE(c.c.c)
b) vì AOB=COE(câu a)
gócOAB=gócOCA(hai góc tương ứng)
Xét tam giác AHO và tam giac BHO
có góc AOH = góc BOH (GT)
OH chung
góc OHA=góc OHB = 90 độ
suy ra tam giác AHO = tam giac BHO (G.C.G)
suy ra OA=OB(hai cạnh tương ứng) , HA=HB (hai cạnh tương ứng)
b) Vì góc AOB = 1000
mầ tia OH là phân giác của góc AOB
suy ra góc AOH = góc BOH =góc AOB:2=500
LẠi có OA=OB suy ra tam giác AOB cân tại O
suy ra góc ABO=góc BAO
Trong tam giác AOB có góc ABO+góc BAO +1000= 1800
suy ra góc ABO=góc BAO=400
c) Xét tam giác HBC và tam giác HAC
có BH=HA (CMT)
góc AHC=góc BHC=900
HC chung
suy ra tam giác HBC = tam giác HAC (c.g.c)
suy ra BC=CA suy ra tam giác ABC cân tại C
mà góc HBC = 600
suy ra tam giác ABC đều.
d) Xét tam giác AOB và tam giác EBO
có BE=OA=BO
góc EBO=góc AOB=1000
OB chung
suy ra tam giác AOB =tam giác EBO
suy ra AB=OE (hai cạnh tương ứng)
a)Xét hai t/g vuông OHA và OHB có:
OH(chung)
góc HOA=góc HOB(gt)
=>T/g OHA = t/g OHB(cạnh góc vuông-góc nhọn kề)
=>HA=HB;OA=OB
b)Vì OB=OA(câu a) nên t/g OAB cân tại O
=>Góc A=góc B
Do đó:
A=B=(180-O):2
=(180-100):2=40
Một gen có hiệu % giũa G với một loại nu khác bằng 20% tổng số nu của gen là 3000 nu. Gen nhân đôi 5 lần tính.
a)số lượng nu mỗi loại
b ) số nu mỗi loại môi trường cung cấp
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó; ΔOBA=ΔOCA
b: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
=>\(\widehat{OBE}=\widehat{OCM}\)
Xét ΔOBE và ΔOCM có
\(\widehat{OBE}=\widehat{OCM}\)
OB=OC
\(\widehat{BOE}\) chung
Do đó: ΔOBE=ΔOCM
c: ΔOBE=ΔOCM
=>OE=OM
OB+BM=OM
OC+CE=OE
mà OM=OE và OB=OC
nên BM=CE
Xét ΔOAM và ΔOAE có
OM=OE
\(\widehat{AOM}=\widehat{AOE}\)
OA chung
Do đó: ΔOAM=ΔOAE
=>AM=AE
d: OE=OM
=>O nằm trên trung trực của EM(1)
AM=AE
=>A nằm trên trung trực của EM(2)
HE=HM
=>H nằm trên trung trực của EM(3)
Từ (1),(2),(3) suy ra O,A,H thẳng hàng