K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

Hình bạn tự vẽ nha!

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

=> \(\widehat{xOz}=\widehat{yOz}.\)

Hay \(\widehat{AOC}=\widehat{BOC}\)

Xét 2 \(\Delta\) \(AOC\)\(BOC\) có:

\(OA=OB\left(gt\right)\)

\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)

Cạnh OC chung

=> \(\Delta AOC=\Delta BOC\left(c-g-c\right).\)

=> \(AC=BC\) (2 cạnh tương ứng)

Chúc bạn học tốt!

5 tháng 10 2019

O B A y x C z

a) Cm: AC=BC

Xét ΔAOC và ΔBOC, ta có:

\(\begin{cases} OA=OB(gt)\\ \widehat{AOC}= \widehat{BOC}(OC là tia phân giác \widehat{xOy}\\ OC là cạnh chung \end{cases}\)

Vậy ΔAOC = ΔBOC(c-g-c)

=>AC=BC( 2 cạnh tương ứng)

b)Cm: \(\widehat{xAC}=\widehat{yBC}\)

Ta có:

\(\begin{cases} \widehat{xAC}+ \widehat{OAC}=180^o(kề bù)\\ \widehat{yBC}+ \widehat{OBC}=180^o(kề bù) \end{cases}\)

Mà:

\(\begin{cases} \widehat{OAC}= \widehat{OBC}( \Delta AOC=\Delta BOC) \end{cases}\)

Suy ra: \( \widehat{xAC}= \widehat{yBC}\)

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD

20 tháng 12 2016

x y A B M N H I

a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:

OA = OB (GT)

góc O chung

=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)

=> OM = ON ( 2 cạnh tương ứng ) → đpcm

Ta có OA + AN = ON

OB + BM = OM

mà OM = ON ( cm trên ); OA = OB

=> AN = BM → đpcm

b) Xét ΔNOH và ΔMOH có;

ON = OM (cm trên)

OH chung

NH = MH (suy từ gt)

=> ΔNOH = ΔMOH (c.c.c)

=> góc NOH = MOH ( 2 góc tương ứng )

Do đó OH là tia pg của góc xOy → đpcm (1)

c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.

Xét ΔNAI và ΔMBI có:

góc ANI = BMI (cm trên)

AN = BM ( câu a)

góc NAI = MBI (= 90 )

=> ΔNAI = ΔMBI ( g.c.g )

=> AI = BI (2 cạnh tương ứng)

Xét ΔAOI và ΔBOI có :

AI = BI (cm trên)

góc OAI = OBI (=90)

OI chung

=> ΔAOI = ΔBOI ( c.g.c )

=> góc AOI = BOI ( 2 góc tương ứng )

Do đó OI là tia pg của xOy (2)

Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.

Chúc học tốt nguyen thi minh nguyet hihi

20 tháng 12 2016

a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:

OA = OB (gt)

O là góc chung

Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)

=> AMO = BNO (2 góc tương ứng)

OM = ON (2 cạnh tương ứng) (1)

Lại có: OB = OA (gt)

=> OM - OB = ON - OA

=> BM = AN (2)

(1) và (2) là đpcm

b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:

AN = BM (câu a)

ANH = BMH (câu a)

Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)

=> HN = HM (2 cạnh tương ứng)

Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)

=> NOH = MOH (2 góc tương ứng)

=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)

c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)

=> NOI = MOI (2 góc tương ứng)

=> OI là phân giác NOM

Mà OH cũng là phân giác NOM

Nên O,H,I thẳng hàng (đpcm)