K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Ta có

Phần dư của phép chia f(x) cho g(x) là R = (a – 1)x + b + 30

Để phép chia trên là phép chia hết thì R = 0 với mọi x

ó (a – 1)x + b + 30 = 0 với mọi x

ó a - 1 = 0 b + 30 = 0  ó   a = 1 b = - 30

Vậy a = 1; b = -30

Đáp án cần chọn là: D

29 tháng 10 2021

a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

8 tháng 8 2017

2. ta co bieu thuc x - ( f-1)

3.

10 tháng 10 2021

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

10 tháng 10 2021

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

Xl m.n :)) Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì . Ai chưa biết thì tham khảo luôn nha luôn nha :)) Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1 Giải : Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*) Theo đề ra ta có : \(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\) Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra : +...
Đọc tiếp

Xl m.n :))

Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì .

Ai chưa biết thì tham khảo luôn nha luôn nha :))

Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1

Giải :

Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\)

Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*)

Theo đề ra ta có :

\(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\)

Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra :

+ \(f\left(1\right)=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=\left(1^2-1\right).G\left(1\right)+ax+b\)

=> a + b = 2 (1)

+ \(f\left(-1\right)=\left(-1\right)^{2015}+\left(-1\right)^{1945}+\left(-1\right)^{1930}-\left(-1\right)^2-\left(-1\right)+\left(-1\right)=\left[\left(-1\right)^2-1\right].G\left(1-\right)+a.\left(-1\right)+b\)

=> b - a = 0 (2)

Cộng (1) và (2)

=> (a + b ) + ( b - a ) = 2+0

=> b = 1

=> a = 1 .

Thay vào (*) ta có :

Số dư là x + 1

Thân ~

~ S.b ~

17
2 tháng 1 2017

Tuyệt vời. Cảm ơn em đã chia sẻ.

2 tháng 1 2017

Cảm ơn nha :))

NV
13 tháng 12 2021

\(x^4-9x^3+21x^2+x+a=\left(x^2-8x+15\right)\left(x^2-x-2\right)+a+30\)

\(\Rightarrow a+30=0\Rightarrow a=-30\)