Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Công thức tính tổng các hệ số của f(x) là: \(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)
2. Công thức tính tổng các hệ số của:
- Lũy thừa bậc chẵn là: \(a_0+a_2+a_4+a_6+...+a_{2k-2}+a_{2k}\)với k = n/2 khi n chẵn và k = (n-1)/2 với n lẻ.
- Lũy thừa bậc lẻ là: \(a_1+a_3+a_5+a_7+...+a_{2k-3}+a_{2k-1}\)với k = n/2 khi n chẵn và k = (n+1)/2 với n lẻ.
Ta có
( x 2 + x + 1 ) ( x 3 – 2 x + 1 ) = x 2 . x 3 + x 2 . ( - 2 x ) + x 2 . 1 + x . x 3 + x . ( - 2 x ) + x . 1 + 1 . x 3 + 1 . ( - 2 x ) + 1 . 1 = x 5 – 2 x 3 + x 2 + x 4 – 2 x 2 + x + x 3 – 2 x + 1 = x 5 + x 4 – x 3 – x 2 – x + 1
Hệ số của lũy thừa bậc ba là – 1
Hệ số của lũy thừa bậc hai là – 1
Hệ số của lũy thừa bậc nhất là – 1
Tổng các hệ số này là -1 +(-1) + (-1) = -3
Đáp án cần chọn là: C
\(\left(x^3-x+1\right)\left(x^3+x+1\right)=\left(x^3+1\right)-x^2=x^6+2x^3-x^2+1.\text{Bậc 3 là 2; Bậc 2 là 1}\)
( x3 + x + 1 )( x3 - x + 1 )
= [ ( x3 + 1 ) + x ][ ( x3 + 1 ) - x ]
= ( x3 + 1 )2 - x2 ( HĐT số 3 )
= x6 + 2x3 - x2 + 1
Hệ số của lũy thừa bậc 3 : 2
2 : -1
1 : 0
f(x) = (x2- x + 1)2016 = a4032 . x4032 + a4031 . x4031 +.....+ a1 . x + a0
=>f(1)=\(\left(1^2-1+1\right)^{2016}=a_{4032}+a_{4031}+......+a_1+a_0\)=1
vậy tổng các hệ số bằng 1
a) Giả sử đa thức f(x) sau khi lũy thừa bậc 2012 viết ra dưới dạng tổng quát:
\(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_2x^2+a_1x+a_0\)
Thì: \(f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0=\left(1^2+3\cdot1-1\right)^{2012}=3^{2012}\)(1)
Hay TỔNG của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Và: \(f\left(-1\right)=a_0-a_1+a_2-a_3+...=\left(\left(-1\right)^2+3\left(-1\right)-1\right)^{2012}=\left(-3\right)^{2012}=3^{2012}\)(2)
Hay HIỆU của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Vậy, tổng các hệ số của hạng tử chứa lũy thừa bậc chẵn của x là: 1/2(TỔNG + HIỆU) = 32012.
\(1.\text{ }f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
\(2.\)
+Trường hợp 1: n chẵn
\(f\left(-1\right)=a_n-a_{n-1}+...-a_1+a_0\)
\(\Rightarrow a_n+a_{n-2}+...+a_0-\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(-1\right)\)
Mà \(\left(a_n+a_{n-2}+...+a_0\right)+\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(1\right)\)
Cộng theo vế, ta được \(a_n+a_{n-2}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)
Trừ theo vế, ta được: \(a_{n-1}+a_{n-3}+...+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
+Trường hợp 2: n lẻ.
Làm tương tự, ta được:
\(a_n+a_{n-2}+...+a_3+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
\(a_{n-1}+a_{n-3}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)