Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Ta chia làm 2 bài:
*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.
- 6a nguyên \(\Rightarrow\)a nguyên.
- 2b nguyên \(\Rightarrow\)b nguyên.
- a+b+c nguyên \(\Rightarrow\)c nguyên.
\(\Rightarrow\)đpcm.
*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.
\(f\left(0\right)=d\) nguyên.
\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.
\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.
\(\Rightarrow4a+2b+c\) nguyên
\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow3a+b\) nguyên.
\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên
\(\Rightarrow9a+3b+c\) nguyên
\(9a+3b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên
\(\Rightarrow a,b\) nguyên.
\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)
\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)
\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)
Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên
=>(a+b+c+d)+(-a+b-c+d)=2b+2d mà d nguyên => 2d nguyên
=>(2b+2d)-2d=2b nguyên
Thay b=3a+c vào f(x) ta được:
f(x)=ax3+(3a+c)x2+cx+d
=ax3+3ax2+cx2+cx+d
Suy ra: f(1).f(2)=(a.13+3a.12+c.12+c.1+d)[a.(-2)3+3a.(-2)2+c.(-2)2+c.(-2)+d]
=(a+3a+c+c+d)(-8a+12a+4c-2c+d)
=(4a+2c+d)(4a+2c+d)
=(4a+2c+d)2
Mà a,b,c,d là số nguyên nên: f(1).f(2) là bình phương của 1 số nguyên
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
+ Với x=0 ta có f(x) = d ( \(f\left(0\right)\in Z\Rightarrow d\in Z\) )
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d\)
+ Với x= 1 ta có \(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(-1\right)+f\left(1\right)=2b+2d\)
\(\Rightarrow2b=f\left(-1\right)+f\left(1\right)-2d\)
\(\Rightarrow2b\in Z\left(1\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d\)
\(\Rightarrow f\left(2\right)-2f\left(1\right)=6a-2b+d\)
\(\Rightarrow6a=f\left(2\right)-2f\left(1\right)+2b-d\)
\(\Rightarrow6a\in Z\left(2\right)\)
Từ (1) và (2) \(\Rightarrow6a,2b\in Z\left(đpcm\right)\)
khi và chỉ khi là phải chứng minh cả 2 chiều