Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có b^2=ac =>a/b=c/d. Đặt a/b=c/d=k(khác 0) =>a=bk;b=ck =>a/c=c.k^2/c=k^2 (1) (a+2015b)^2/(b+2015c)^2=(bk+2015b/ck+2015c)^2=(b(k+2015)/(c(k+2015))^2=(b/c)^2=(ck/c)^2=k^2 (2) Từ (1) và (2) => a/c=(a+2015b/b+2015c)^2 => (đpcm)
Ta có:\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\)
Mà\(\frac{a}{b}=\frac{b}{c}=\frac{2015b}{2015c}=\frac{a+2015b}{b+2015c}\)
Nên suy ra\(\frac{a}{c}=\frac{a^2}{b^2}=\left(\frac{a+2015b}{b+2015c}\right)^2=\frac{\left(a+2015b\right)^2}{\left(b+2015c\right)^2}\)
Vậy\(\frac{a}{c}=\frac{\left(a+2015b\right)^2}{\left(b+2015c\right)^2}\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b-2015c}{c}=\frac{2016c}{a}\)\(=\frac{a+b-2015c+2016c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\).
Suy ra \(\frac{a}{b}=1\Leftrightarrow a=b\).
Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)
Thay (1) vào ta có :
\(\frac{3a^2+c^2}{3b^2+d^2}=\frac{3\left(kb\right)^2+\left(kd\right)^2}{3b^2+d^2}=\frac{3k^2b^2+k^2+d^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\)(1)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(\RightarrowĐPCM\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)=>\(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) ta suy ra ĐPCM