Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)
\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)
..............................
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)
Áp dụng bđt cosi ta có
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)
\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)
\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)
\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)
Cộng vế của các bđt trên và kết hợp với (1)
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
người đăng bài mới học lớp 8 thì trong chương trình lớp 8 chưa đc học Svac-xơ đâu ạ .Nếu dùng cần cm ạ
Đặt vế trái là P, áp dụng AM-GM cho từng cặp:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge a\) ; \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) ; \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\) ; \(\frac{d^2}{a+d}+\frac{a+d}{4}\ge d\)
Cộng vế với vế:
\(P+\frac{a+b+c+d}{2}\ge a+b+c+d\Rightarrow P\ge\frac{a+b+c+d}{2}\)
\("="\Leftrightarrow a=b=c=d\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)
Tương tự: với b,c rồi cộng vế theo vế có ĐPCM
Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)
Cộng vế với vế (3);(4);(5);(6) ta có:
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
nguồn:soyeon_Tiểubàng giải
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b}{d}=\frac{a}{c}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
đpcm
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
đpcm