Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài : a3 + b3 +c3 = 3abc và a;b;c >0 nên : a = b = c (cái này mk k bịa ra nah ) có quy tắc nha !
Vậy biểu thức trên sẽ bằng 1 + 1 +1 = 3
Chúc bn hc tốt :3
\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)
hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
TH1 : \(a-b=c-d=0\)
\(\Rightarrow a=b;c=d\)
\(\Rightarrow a+c=b+d\)
TH2 :\(a-b\ne0;c-d\ne0\)
\(\frac{a-b}{b-c}=\frac{c-d}{d-a}\)
\(\Rightarrow\left(a-b\right)\left(d-a\right)=\left(b-c\right)\left(c-d\right)\)
\(\Rightarrow ad-a^2-bd+ab=bc-bd-c^2+cd\)
\(\Rightarrow ad-a^2+ab=bc-c^2+cd\)
\(\Rightarrow a\left(d-a+b\right)=c\left(b-c+d\right)\)
Với \(d-a+b=b-c+d=0\)
\(\Rightarrow d-a+b-\left(d+b\right)=\left(b-c+d\right)-\left(d+b\right)\)
\(\Rightarrow a=c\)
Với \(d-a+b\ne0;b-c+d\ne0\)
\(\Rightarrow a=c\)
Vậy ...
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi
\(\frac{a-b}{b-c}=\frac{c-d}{d-a}=\frac{a-b+c-d}{b-c+d-a}=\frac{a-b+c-d}{-\left(a-b+c-d\right)}=-1\)
\(\Rightarrow\frac{a-b}{b-c}=-1\Rightarrow a-b=c-b\Rightarrow a=c\)