K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

26 tháng 12 2015

theo bài ra ta có : \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1^2=1\)

Ta thấy

\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2.\frac{1}{xy}-2.\frac{1}{xz}+2.\frac{1}{yz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{1}{xy}+\frac{1}{xz}-\frac{1}{yz}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{z+y-x}{xyz}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{0}{xyz}\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) vì x = y+z nê y+z-x = 0

Vậy \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1ĐPCM\)

25 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\frac{yz+xz+xy}{xyz}=0\)

yz + xz + xy = 0

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)

25 tháng 1 2017

a) Từ giả thiết suy ra: xy + yz + zx = 0

Do đó:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)

b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)

Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra điều phải chứng minh

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

5 tháng 7 2016

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.0=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(dpcm\right)\)

Chúc bạn học tốt 

1 cái T I C K nha cảm ơn