Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Ta có:
\(\left(a+1\right)^2\left(b+1\right)^2=\left[\left(a+1\right)\left(b+1\right)\right]^2=\left(1+a+b+ab\right)^2\)
\(=\left[\left(ab+1\right)+\left(a+b\right)\right]^2\ge4\left(a+b\right)\left(ab+1\right)\)
\(=4a^2b+4ab^2+4a+4b=\left(4a^2b+4b\right)+\left(4ab^2+4a\right)\)
\(=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)
\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge\frac{4a\left(1+b^2\right)}{1+c^2}+\frac{4b\left(1+a^2\right)}{1+c^2}\)
Tương tự ta chứng minh được:
\(\frac{\left(b+1\right)^2\left(c+1\right)^2}{1+a^2}\ge\frac{4c\left(1+b^2\right)}{1+a^2}+\frac{4b\left(1+c^2\right)}{1+a^2}\)
\(\frac{\left(a+1\right)^2\left(c+1\right)^2}{1+b^2}\ge\frac{4a\left(1+c^2\right)}{1+b^2}+\frac{4c\left(1+a^2\right)}{1+b^2}\)
Cộng vế 3 BĐT trên lại ta được:
\(VT\ge4a\left(\frac{1+b^2}{1+c^2}+\frac{1+c^2}{1+b^2}\right)+4b\left(\frac{1+a^2}{1+c^2}+\frac{1+c^2}{1+a^2}\right)+4c\left(\frac{1+a^2}{1+b^2}+\frac{1+b^2}{1+a^2}\right)\)
\(\ge8a+8b+8c=8\left(a+b+c\right)=8\cdot3=24\) (BĐT Cauchy)
Dấu "=" xảy ra khi: a = b = c = 1
Áp dụng bất đẳng thức AM - GM, ta được:
\(\left(a+1\right)^2\left(b+1\right)^2=\left(ab+1+a+b\right)^2\ge4\left(ab+1\right)\left(a+b\right)=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge4a.\frac{1+b^2}{1+c^2}+4b.\frac{1+a^2}{1+c^2}\)
Tương tự: \(\frac{\left(b+1\right)^2\left(c+1\right)^2}{1+a^2}\ge4b.\frac{1+c^2}{1+a^2}+4c.\frac{1+b^2}{1+a^2}\); \(\frac{\left(c+1\right)^2\left(a+1\right)^2}{1+b^2}\ge4c.\frac{1+a^2}{1+b^2}+4a.\frac{1+c^2}{1+b^2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}+\frac{\left(1+b\right)^2\left(1+c\right)^2}{1+a^2}+\frac{\left(1+a\right)^2\left(1+c\right)^2}{1+b^2}\)\(\ge4a.\frac{1+b^2}{1+c^2}+4b.\frac{1+a^2}{1+c^2}+4b.\frac{1+c^2}{1+a^2}+4c.\frac{1+b^2}{1+a^2}+4c.\frac{1+a^2}{1+b^2}+4a.\frac{1+c^2}{1+b^2}\)\(=\left(4a.\frac{1+b^2}{1+c^2}+4a.\frac{1+c^2}{1+b^2}\right)+\left(4b.\frac{1+a^2}{1+c^2}+4b.\frac{1+c^2}{1+a^2}\right)+\left(4c.\frac{1+b^2}{1+a^2}+4c.\frac{1+a^2}{1+b^2}\right)\)\(\ge8\left(a+b+c\right)=24\)Đẳng thức xảy ra khi a = b = c = 1Bổ đề 1: Với m, n < 1 ta có bất đẳng thức:
\(\frac{1}{1+m^2}+\frac{1}{1+n^2}\le\frac{2}{1+mn}\).
Thật vậy, bất đẳng thức trên tương đương với: \(\left(mn-1\right)\left(m-n\right)^2\le0\) (luôn đúng).
Bổ đề 2: Với m, n, p < 1 ta có bất đẳng thức:
\(\frac{1}{1+m^3}+\frac{1}{1+n^3}+\frac{1}{1+p^3}\le\frac{3}{1+mnp}\left(2\right)\).
Thật vậy, áp dụng bổ đề (1) ta có:
\(VT_{\left(2\right)}=\left(\frac{1}{1+m^3}+\frac{1}{1+n^3}\right)+\left(\frac{1}{1+p^3}+\frac{1}{1+mnp}\right)-\frac{1}{1+mnp}\le\frac{2}{1+\sqrt{m^3n^3}}+\frac{2}{1+\sqrt{mnp^4}}-\frac{1}{1+mnp}\le\frac{4}{1+\sqrt[4]{m^3n^3.mnp^4}}-\frac{1}{1+mnp}=\frac{4}{1+mnp}-\frac{1}{1+mnp}=\frac{3}{1+mnp}\left(đpcm\right)\).
Quay trở lại bài toán.
Đặt \(\left(\sqrt[3]{a},\sqrt[3]{b},\sqrt[3]{c}\right)=\left(x,y,z\right)\). Ta có: \(0< x,y,z< 1\).
BĐT cần chứng minh trở thành:
\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le\frac{3}{1+2xyz}\left(1\right)\).
Áp dụng BĐT AM - GM và bổ đề 2 ta có: \(VT_{\left(1\right)}\le\frac{1}{1+\left(\sqrt[3]{2}\sqrt{xy}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{yz}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{zx}\right)^3}\le\frac{3}{1+\sqrt[3]{2}\sqrt[3]{2}\sqrt[3]{2}\sqrt{xy.yz.zx}}=\frac{3}{1+2xyz}=VP_{\left(1\right)}\left(đpcm\right)\)
Bạn bổ sung cho mình thêm điều kiện ở hai bổ đề:
Bổ đề 1: Thêm m, n > 0.
Bổ đề 2: Thêm m, n, p > 0.
Cho bài toán phụ : Cho a ; b là các số thực dương
C/m : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
Do a ; b là các số thực dương \(\Rightarrow ab\ge1\)
Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)
\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab^3-a^2b^2+ab-a^2+a^3b-a^2b^2+ab-b^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab\left(a^2+b^2\right)+2ab-2a^2b^2-a^2-b^2}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(ab-1\right)-2ab\left(ab-1\right)}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{...}\ge0\)
Dễ thấy mẫu luôn dương , tử \(\ge0\) => luôn đúng
=> BĐT được c/m
Áp dụng BĐT phụ ( từ bài toán phụ trên ) , ta có :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
( * )
Có : \(\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}=\frac{4c^2+2ab+6-3abc^2-3c^2-3ab-3}{...}=\frac{c^2+3-ab-3abc^2}{...}=\frac{c^2+bc+ac-3abc^2}{...}=\frac{c\left(a+b+c-3abc\right)}{...}\)\(\left(ab+bc+ac=3\right)\) ( 1 )
Do a , b , c là các số thực dương , áp dụng BĐT Cô - si cho 3 số , ta có : \(\left(a+b+c\right)\left(ab+bc+ac\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
\(\Rightarrow a+b+c\ge3abc\left(ab+bc+ac=3\right)\) ( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}\ge0\)
\(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\frac{3}{2}\) ( *' )
Từ (*) và (*') => ĐPCM
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)
sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)
áp dụng bđt Cauchy ta có
\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)
tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)
cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
\(\frac{1}{25}\)<1