Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m=-2\) ko thỏa mãn
Với \(m\ne-2\) hàm \(f\left(x\right)\) là bậc nhất trên bậc nhất nên luôn đơn điệu trên khoảng đã cho
\(\Rightarrow\) min max rơi vào 2 đầu mút
\(f\left(2\right)=m+4\) ; \(f\left(3\right)=\dfrac{m+6}{2}\)
\(\Rightarrow\left|m+4-\dfrac{m+6}{2}\right|=2\Leftrightarrow\)
\(\Leftrightarrow m+2=\pm4\Rightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)
Hàm \(f\left(\left|x\right|\right)\) có 5 điểm cực trị khi \(f\left(x\right)\) có 2 cực trị dương
\(\Rightarrow f'\left(x\right)=3x^2-4x+2-m=0\) có 2 nghiệm dương phân biệt
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=4-3\left(2-m\right)>0\\x_1+x_2=\dfrac{4}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{3}< m< 2\)
\(g'\left(x\right)=0\Rightarrow x=0\)
Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)
\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)
\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)
\(\Rightarrow-m\le-3\Rightarrow m\ge3\)
9.
\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)
\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)
10.
\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)
\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)
\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)
4.
\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)
5.
\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)
6.
\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)
7.
\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)
8.
\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)
\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)
\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)
Ta có:
\(f'\left(x\right)=x^3\left[f\left(x\right)\right]^2\Leftrightarrow\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=x^3\)
Lấy nguyên hàm hai vế:
\(\int\frac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=\int x^3\Leftrightarrow-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+C\)
f(2)=-1/5 <=> \(-\frac{1}{-\frac{1}{5}}=\frac{2^4}{4}+C\Leftrightarrow C=1\)
Suy ra: \(-\frac{1}{f\left(x\right)}=\frac{x^4}{4}+1\Leftrightarrow f\left(x\right)=-\frac{4}{x^4+4}\)
Chọn B