K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

@Nguyễn Việt Lâm giúp em với ạ

NV
23 tháng 5 2021

Đề bài liệu có chính xác không nhỉ? Mình chỉ có thể tìm được max bằng \(2\sqrt{2}\) (xảy ra khi \(lnx=\sqrt{2}\) và \(lny=\dfrac{1}{2}\)) và ko thể tìm được min.

NV
23 tháng 5 2021

À rồi OK, suy nghĩ hơi cồng kềnh 1 xíu nên hướng tìm min bị sai:

Giả thiết tương đương: \(y^{\sqrt{4-ln^2x}}=x^{1-lny}\)

\(\Rightarrow\sqrt{4-ln^2x}.lny=\left(1-lny\right)lnx\) (1)

Do \(y\ne1\Rightarrow lny\ne0\)

Nên (1) tương đương: \(\sqrt{4-ln^2x}=\left(\dfrac{1-lny}{lny}\right)lnx\) (2)

Đặt \(\left\{{}\begin{matrix}lnx=a\\lny=b\end{matrix}\right.\) thì \(log_yx=\dfrac{a}{b}\)

(2) trở thành: \(\sqrt{4-a^2}=\left(\dfrac{1-b}{b}\right)a\)

\(\Rightarrow\sqrt{4-a^2}=\dfrac{a}{b}-a\Rightarrow\dfrac{a}{b}=\sqrt{4-a^2}+a\)

Xét hàm \(f\left(a\right)=\sqrt{4-a^2}+a\) trên \(\left[-2;2\right]\)

\(f'\left(a\right)=1-\dfrac{a}{\sqrt{4-a^2}}=0\Rightarrow a=\sqrt{2}\)

\(f\left(-2\right)=-2\) ; \(f\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(f\left(2\right)=2\)

\(\Rightarrow f\left(a\right)_{min}=-2\) ; \(f\left(a\right)_{max}=2\sqrt{2}\)

Đáp án B

14 tháng 11 2019

+ Đạo hàm f'(x) = 1   -   m ( x + 1 ) 2 .

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

m i n   y [ 1 ; 2 ]   +   m a x [ 1 ; 2 ]   y   =   f ( 1 )   + f ( 2 )   =   m + 1 2 +   m + 2 3   =   16 3 ↔ 5 m 6   =   25 6 ↔   m   =   5

Chọn D.

NV
9 tháng 3 2022

Việc gọi ẩn ko ảnh hưởng gì tới kết quả bài toán cả, cứ thoải mái đi

20 tháng 10 2019

Chọn B

18 tháng 6 2018

Chọn B

4 tháng 10 2017

Chọn B

NV
17 tháng 7 2021

a.

TXĐ: \(D=\left[-4;2\right]\)

\(0\le\sqrt{9-\left(x+1\right)^2}\le3\Rightarrow-1\le\sqrt{9-\left(x+1\right)^2}\le2\)

\(\Rightarrow f'\left(\sqrt{8-x^2-2x}-1\right)\le0\) ; \(\forall x\in D\)

\(g'\left(x\right)=-\dfrac{x+1}{\sqrt{8-x^2-2x}}.f'\left(\sqrt{8-x^2-2x}-1\right)\) luôn cùng dấu \(x+1\)

\(\Rightarrow g\left(x\right)\) đồng biến trên \(\left[-1;2\right]\) và nghịch biến trên \(\left[-4;-1\right]\)

Từ BBT ta thấy \(g\left(x\right)_{max}=g\left(-4\right)=g\left(2\right)=f\left(-1\right)=?\)

\(g\left(x\right)_{min}=g\left(-1\right)=f\left(2\right)=?\)

(Do đề chỉ có thế này nên ko thể xác định cụ thể được min-max)

b.

\(g'\left(x\right)=\left(2x+1\right).f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\f'\left(x^2+x\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1), ta chỉ cần quan tâm 2 nghiệm bội lẻ:

\(f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x^2+x=-1\left(vô-nghiệm\right)\\x^2+x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\) \(\Rightarrow x^2+x\ge2\) ; với \(-2\le x\le1\Rightarrow-1\le x^2+x\le2\) nên ta có bảng xét dấu:

undefined

Từ BBT ta có: \(x=-\dfrac{1}{2}\) là cực đại, \(x=-2;x=1\) là 2 cực tiểu

Hàm đồng biến trên ... bạn tự kết luận

31 tháng 1 2022

Do \(M\in d\) nên M(1+2t; 1-t ; t) 

MA+MB= \(\sqrt{4t^2+\left(t-1\right)^2+\left(t+1\right)^2}+\sqrt{\left(2t-1\right)^2+t^2+\left(t-1\right)^2}\)

\(=\sqrt{6t^2+2}+\sqrt{6t^2-6t+2}=\sqrt{6t^2+2+}\sqrt{6.\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}}\) 

Chọn \(\overset{r}{u}=\left(\sqrt{6t};\sqrt{2}\right);\overset{r}{v}=\left(\sqrt{6}.\left(\dfrac{1}{2}-t\right);\dfrac{1}{\sqrt{2}}\right)\)

\(\Rightarrow\overset{r}{u}+\overset{r}{v}=\left(\dfrac{\sqrt{6}}{2};\dfrac{3}{\sqrt{2}}\right)\) , Ta có :

MA+MB=\(\left|\overset{r}{u}\right|+\left|\overset{r}{v}\right|\ge\left|\overset{r}{u}+\overset{r}{v}\right|=\sqrt{\dfrac{6}{4}+\dfrac{9}{2}}=\sqrt{6}\)

Dấu đẳng thức xảy ra <=> \(\overset{r}{u};\overset{r}{v}\) cùng hướng

\(\Leftrightarrow\dfrac{\sqrt{6t}}{\sqrt{6}\left(\dfrac{1}{2}-t\right)}=\dfrac{\sqrt{2}}{\dfrac{1}{\sqrt{2}}}\Leftrightarrow1=1-2t\)

\(\Leftrightarrow t=\dfrac{1}{3}\) . Vậy MA+MB nhỏ nhất

\(\Leftrightarrow M\left(\dfrac{5}{3},\dfrac{2}{3};\dfrac{1}{3}\right)\)

Vậy chọn D