K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019

=> A + 2018 A = 1 +2018^2019

=> 2019 A = 1 + 2018^2019 

=> 2019 A - 1 = 2018^2019 

=> 2019 A -1 là 1 lũy thừa của 2018

A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)

=2019(1+2018^2+...+2018^2016) chia hết cho 2019

=>A chia 2019 dư 0

NV
7 tháng 5 2019

\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)

\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)

\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)

\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)

b/ \(M=2018+2018^2+...+2018^{2018}\)

\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)

Lấy dưới trừ trên:

\(2018M-M=-2018+2018^{2019}\)

\(\Rightarrow2017M=2018^{2019}-2018\)

\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)

\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)

7 tháng 5 2019

Cảm ơn bạn đã giúp mình

17 tháng 12 2022

 4 + 4+ 4+ 4+ ... + 423 + 424

=  (4 + 4+ 43) + ... + (422 + 423 + 424)

=   4x(1+4+42) + ... + 422x(1+4+42)

=   4x21 + ... + 422x21

=   (4+...+422)x21

Đúng thì nhớ tick cho mình nha,mình cảm ơn

Ảnh đại diện của bn đẹp z

31 tháng 7 2017

bạn ơi mình cần câu trả lời

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)