Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Dựng đường thẳng vuông góc với BN tại M cắt AC,D tại E,F. Khi đó: M là trung điểm EF
Thật vậy: Dễ thấy tứ giác ACBD là hình vuông => ^BDF = 900. Có ^BMF = 900 Suy ra: Tứ giác BMFD nội tiếp
=> ^BFM = ^BDM = 450. Do đó: \(\Delta\)BMF vuông cân tại M => MF = MB
Lại thấy: ^BME = ^BCE = 900 => Tứ giác BECM nội tiếp => ^BEM = ^BCM = 450
=> \(\Delta\)BME vuông cân tại M => MB = ME. Từ đó: ME = MF (Hoàn tất c/m)
+) Ta có: \(\Delta\)BEF vuông cân tại B => BE = BF. Kết hợp: BC = BD, ^BCE = ^BDF (=900)
Suy ra: \(\Delta\)BCE = \(\Delta\)BDF (Ch.cgv) => CE = DF (Cạnh tương ứng)
Từ đó: AE + AF = AC + CE + AF = AC + DF + AF = AC + AD = 2AC = R.\(2\sqrt{2}\)= 6\(\sqrt{2}\)(cm) (R=3 cm)
Vậy tổng AE + AF = const (đpcm).
cho mình hỏi cũng đề này mà chứng minh :
1 ND là đường phân giác của góc ANB
2. tính căn của BM.BN
1) Xét (O) có
\(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ANB}=90^0\)
Xét tứ giác ANMO có
\(\widehat{ANM}+\widehat{AOM}=180^0\left(90^0+90^0=180^0\right)\)
nên ANMO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
2) Vì AB⊥CD(gt)
mà AB,CD là các đường kính của (O)
nên D là điểm chính giữa của cung AB
Xét (O) có
\(\widehat{AND}\) là góc nội tiếp chắn cung AD
\(\widehat{BND}\) là góc nội tiếp chắn cung BD
\(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)(D là điểm chính giữa của cung AB)
Do đó: \(\widehat{AND}=\widehat{BND}\)(Hệ quả góc nội tiếp)
hay ND là tia phân giác của \(\widehat{ANB}\)(đpcm)
a) Tứ giác ACEH có
ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)
=> tứ giác ACHE nội tiếp
b) tứ giác ACHE nội tiếp
=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)
lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)
mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900
=>ˆEAH+ˆADF=900EAH^+ADF^=900
=> DF⊥ABDF⊥AB
mà EH⊥ABEH⊥AB
=> DF//EHDF//EH
c)các bước chứng minh nè :
cm HOD=DCH (2 góc cùng nhìn DH)
thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D
a) Tứ giác ACEH có
\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)
=> tứ giác ACHE nội tiếp
b) tứ giác ACHE nội tiếp
=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)
lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)
mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)
=>\(\widehat{EAH}+\widehat{ADF}=90^0\)
=> \(DF\perp AB\)
mà \(EH\perp AB\)
=> \(DF//EH\)
c)các bước chứng minh nè :
cm HOD=DCH (2 góc cùng nhìn DH)
thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D
a. Xét (o) , có:
\(AB\perp CD=\left\{O\right\}\)
=> \(\widehat{COB}=\widehat{COA=}90^o\)
Mà \(M\in CD\)
=> \(\widehat{MOB}=\widehat{MOA}=90^o\)
Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)
Xét tứ giác AOMN, có:
\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)
\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau
=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)