K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

a. Xét (o) , có: 
\(AB\perp CD=\left\{O\right\}\)

=> \(\widehat{COB}=\widehat{COA=}90^o\)

Mà \(M\in CD\)

=> \(\widehat{MOB}=\widehat{MOA}=90^o\)

Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)

Xét tứ giác AOMN, có:

\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)

\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau

=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)

28 tháng 2 2019

O A B C D M N E F

+) Dựng đường thẳng vuông góc với BN tại M cắt AC,D tại E,F. Khi đó: M là trung điểm EF

Thật vậy: Dễ thấy tứ giác ACBD là hình vuông => ^BDF = 900. Có ^BMF = 900 Suy ra: Tứ giác BMFD nội tiếp

=> ^BFM = ^BDM = 450. Do đó: \(\Delta\)BMF vuông cân tại M => MF = MB

Lại thấy: ^BME = ^BCE = 900 => Tứ giác BECM nội tiếp => ^BEM = ^BCM = 450 

=> \(\Delta\)BME vuông cân tại M => MB = ME. Từ đó: ME = MF (Hoàn tất c/m)

+) Ta có: \(\Delta\)BEF vuông cân tại B => BE = BF. Kết hợp: BC = BD, ^BCE = ^BDF (=900)

Suy ra: \(\Delta\)BCE = \(\Delta\)BDF (Ch.cgv) => CE = DF (Cạnh tương ứng) 

Từ đó: AE + AF = AC + CE + AF = AC + DF + AF = AC + AD = 2AC = R.\(2\sqrt{2}\)= 6\(\sqrt{2}\)(cm) (R=3 cm)

Vậy tổng AE + AF = const (đpcm).

18 tháng 4 2021

cho mình hỏi cũng đề này mà chứng minh :

1 ND là đường phân giác của góc ANB 

2. tính căn của BM.BN

1) Xét (O) có 

\(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ANB}=90^0\)

Xét tứ giác ANMO có 

\(\widehat{ANM}+\widehat{AOM}=180^0\left(90^0+90^0=180^0\right)\)

nên ANMO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2) Vì AB⊥CD(gt)

mà AB,CD là các đường kính của (O)

nên D là điểm chính giữa của cung AB

Xét (O) có 

\(\widehat{AND}\) là góc nội tiếp chắn cung AD

\(\widehat{BND}\) là góc nội tiếp chắn cung BD

\(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)(D là điểm chính giữa của cung AB)

Do đó: \(\widehat{AND}=\widehat{BND}\)(Hệ quả góc nội tiếp)

hay ND là tia phân giác của \(\widehat{ANB}\)(đpcm)

25 tháng 9 2018

Ai làm hộ mình với

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D