Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét (o) , có:
\(AB\perp CD=\left\{O\right\}\)
=> \(\widehat{COB}=\widehat{COA=}90^o\)
Mà \(M\in CD\)
=> \(\widehat{MOB}=\widehat{MOA}=90^o\)
Ta có: \(\widehat{ANB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB
=> \(\widehat{ANB}=90^o\)
Xét tứ giác AOMN, có:
\(\widehat{ANB+}\widehat{MOA}=90^o+90^o=180^o\)
\(\widehat{ANB}\)và \(\widehat{MOA}\)là 2 góc đối nhau
=> AOMN là tứ giác nội tiếp (dhnb) (đpcm)
1) Xét (O) có
\(\widehat{ANB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ANB}=90^0\)
Xét tứ giác ANMO có
\(\widehat{ANM}+\widehat{AOM}=180^0\left(90^0+90^0=180^0\right)\)
nên ANMO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
2) Vì AB⊥CD(gt)
mà AB,CD là các đường kính của (O)
nên D là điểm chính giữa của cung AB
Xét (O) có
\(\widehat{AND}\) là góc nội tiếp chắn cung AD
\(\widehat{BND}\) là góc nội tiếp chắn cung BD
\(sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)(D là điểm chính giữa của cung AB)
Do đó: \(\widehat{AND}=\widehat{BND}\)(Hệ quả góc nội tiếp)
hay ND là tia phân giác của \(\widehat{ANB}\)(đpcm)
a) Vì AB là đường kính \(\Rightarrow\angle ADB=\angle ACB=90\)
\(\Rightarrow\angle FDE+\angle FCE=90+90=180\Rightarrow ECFD\) nội tiếp
b) GH cắt AD tại F'.F'B cắt AE tại C'
Ta có: \(\left\{{}\begin{matrix}F'H\bot AB\\BD\bot AF'\end{matrix}\right.\Rightarrow E\) là trực tâm \(\Delta F'AB\Rightarrow AE\bot F'B\Rightarrow AC'\bot F'B\)
mà AB là đường kính \(\Rightarrow C'\in\left(O\right)\Rightarrow C\equiv C'\Rightarrow F'\equiv F\Rightarrow\) đpcm
Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.
Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.
Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.
Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.
Ta có KF // AJ nên áp dụng Ta let ta có:
\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)
Do AB = BJ nên KM = MF.
+) Dựng đường thẳng vuông góc với BN tại M cắt AC,D tại E,F. Khi đó: M là trung điểm EF
Thật vậy: Dễ thấy tứ giác ACBD là hình vuông => ^BDF = 900. Có ^BMF = 900 Suy ra: Tứ giác BMFD nội tiếp
=> ^BFM = ^BDM = 450. Do đó: \(\Delta\)BMF vuông cân tại M => MF = MB
Lại thấy: ^BME = ^BCE = 900 => Tứ giác BECM nội tiếp => ^BEM = ^BCM = 450
=> \(\Delta\)BME vuông cân tại M => MB = ME. Từ đó: ME = MF (Hoàn tất c/m)
+) Ta có: \(\Delta\)BEF vuông cân tại B => BE = BF. Kết hợp: BC = BD, ^BCE = ^BDF (=900)
Suy ra: \(\Delta\)BCE = \(\Delta\)BDF (Ch.cgv) => CE = DF (Cạnh tương ứng)
Từ đó: AE + AF = AC + CE + AF = AC + DF + AF = AC + AD = 2AC = R.\(2\sqrt{2}\)= 6\(\sqrt{2}\)(cm) (R=3 cm)
Vậy tổng AE + AF = const (đpcm).
cho mình hỏi cũng đề này mà chứng minh :
1 ND là đường phân giác của góc ANB
2. tính căn của BM.BN