Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này bạn đã đăng rồi mà? Bạn vui lòng không đăng 1 bài nhiều lần gây loãng box toán!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)
hay \(\widehat{ADP}=\widehat{CAP}\)
Xét ΔADP và ΔCAP có
\(\widehat{ADP}=\widehat{CAP}\)(cmt)
\(\widehat{APD}\) chung
Do đó: ΔADP∼ΔCAP(g-g)
Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(PA^2=PC\cdot PD\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a) Xét tam giác $PAC$ và $PDA$ có:
$\widehat{P}$ chung
$\widehat{PAC}=\widehat{PDA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle PAC\sim \triangle PDA$ (g.g)
$\Rightarrow \frac{PA}{PC}=\frac{PD}{PA}\Rightarrow PA^2=PC.PD$ (đpcm)
b) Vì $Q$ là trung điểm $CD$ nên $OQ\perp CD$
$\Rightarrow \widehat{PQO}+\widehat{PBO}=90^0+90^0=180^0$
$\Rightarrow PQOB$ là tứ giác nội tiếp
$\Rightarrow \widehat{PQB}=\widehat{POB}=\frac{1}{2}\widehat{AOB}=\widehat{AFB}$ (tính chất góc ở tâm và góc nội tiếp cùng chắn 1 cung)
Mà 2 góc này ở vị trí đồng vị nên $AF\parallel CD$ (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp(1)
Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)
nên OHMB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA
hay \(MA^2=MD\cdot MC=MO^2-R^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
BE//AM
=>góc MAB=góc EBH=góc MNH
=>B,N,H,E cùng thuộc 1 đường tròn
=>góc ENB=góc EHB=góc MCB
=>EH//MC
b, Dễ CM được \(\widehat{PAB}=\widehat{PQB}\) (Cm được 5 điểm P, A, O, Q, B thuộc đường tròn theo tứ giác nt)
Mà \(\widehat{PAB}=\widehat{AFB}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nt cùng chắn cung \(\stackrel\frown{AB}\))
\(\Rightarrow\) \(\widehat{PQB}=\widehat{AFB}\)
Mà 2 góc ở vị trí đồng vị \(\Rightarrow\) AF // CD (đpcm)
Chúc bn học tốt!