K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)

hay \(\widehat{ADP}=\widehat{CAP}\)

Xét ΔADP và ΔCAP có 

\(\widehat{ADP}=\widehat{CAP}\)(cmt)

\(\widehat{APD}\) chung

Do đó: ΔADP∼ΔCAP(g-g)

Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(PA^2=PC\cdot PD\)(đpcm)

14 tháng 3 2021

b, Dễ CM được \(\widehat{PAB}=\widehat{PQB}\) (Cm được 5 điểm P, A, O, Q, B thuộc đường tròn theo tứ giác nt)

Mà \(\widehat{PAB}=\widehat{AFB}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nt cùng chắn cung \(\stackrel\frown{AB}\))

\(\Rightarrow\) \(\widehat{PQB}=\widehat{AFB}\)

Mà 2 góc ở vị trí đồng vị \(\Rightarrow\) AF // CD (đpcm)

Chúc bn học tốt!

AH
Akai Haruma
Giáo viên
31 tháng 3 2021

Lời giải:

a) Xét tam giác $PAC$ và $PDA$ có:

$\widehat{P}$ chung

$\widehat{PAC}=\widehat{PDA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle PAC\sim \triangle PDA$ (g.g)

$\Rightarrow \frac{PA}{PC}=\frac{PD}{PA}\Rightarrow PA^2=PC.PD$ (đpcm)

b) Vì $Q$ là trung điểm $CD$ nên $OQ\perp CD$

$\Rightarrow \widehat{PQO}+\widehat{PBO}=90^0+90^0=180^0$

$\Rightarrow PQOB$ là tứ giác nội tiếp

$\Rightarrow \widehat{PQB}=\widehat{POB}=\frac{1}{2}\widehat{AOB}=\widehat{AFB}$ (tính chất góc ở tâm và góc nội tiếp cùng chắn 1 cung)

Mà 2 góc này ở vị trí đồng vị nên $AF\parallel CD$ (đpcm)

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Hình vẽ:
undefined

3 tháng 2 2022

mik chỉ cần câu b thôi

hehe

NV
3 tháng 1

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

NV
3 tháng 1

loading...

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

25 tháng 5 2022

 xin hình vẽ vs ạ

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO