K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2022

 

E M O N H

a/

Ta có

\(\widehat{EMO}=\widehat{ENO}\) => EMON là tứ giác nội tiếp

=> E; M; O; N cùng nằm trên 1 đường tròn có tâm là trung điểm của EO và bán kính là EO/2

b/

Xét tg vuông EMO và tg vuông ENO có

EM=EN (hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) 

EO chung

=> tg EMO = tg ENO (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

=> \(\widehat{MEO}=\widehat{NEO}\)

Xét tg EMN có

EM=EN (cmt) => tg EMN cân tại E

\(\widehat{MEO}=\widehat{NEO}\) (cmt) => OE là phân giác của  \(\widehat{MEN}\)

=> \(OE\perp MN\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

 

 

22 tháng 8 2022

a, Xét tứ giác EMON có ^EMO + ^ENO = 1800

mà 2 góc này đối 

Vậy tứ giác EMON nt 1 đường tròn hay E;M;O;N thuộc 1 đường tròn 

bán kính là OE/2 

b, Vì ME = MN ( 2 tiếp tuyến cắt nhau ) 

OM = ON 

Vậy EO là đường trung trực đoạn MN

Vậy OE vuông MN 

a: Xét (O) có

EN là tiếp tuyến

EM là tiếp tuyến

Do đó: EN=EM

hay E nằm trên đường trực của NM(1)

Ta có: ON=OM

nên O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OE⊥MN

13 tháng 12 2021

a: Xét tứ giác AMON có

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

12 tháng 8 2018

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1

 

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???