Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
EN là tiếp tuyến
EM là tiếp tuyến
Do đó: EN=EM
hay E nằm trên đường trực của NM(1)
Ta có: ON=OM
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OE⊥MN
a: Xét tứ giác AMON có
\(\widehat{OMA}+\widehat{ONA}=180^0\)
Do đó: OMAN là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn
Vẽ được các yếu tố để chứng minh phần (1).
Ta có M B O ^ = 90 0 , M A O ^ = 90 0 (theo t/c của tiếp tuyến và bán kính)
Suy ra: M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.
2) Chứng minh: MN2 = NF. NA và MN = NH
Ta có A E / / M O ⇒ A E M ^ = E M N ^ mà A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^
Δ N M F v à Δ N A M có: M N A ^ chung; E M N ^ = M A F ^
nên Δ N M F đồng dạng với Δ N A M
⇒ N M N F = N A N M ⇒ N M 2 = N F . N A 1
Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N ^ h a y H B F ^ = F M H ^
=> MFHB là tứ giác nội tiếp
⇒ F H M ^ = F B M ^ = F A B ^ h a y F H N ^ = N A H ^
Xét Δ N H F & Δ N A H c ó A N H ^ c h u n g ; N H F ^ = N A H ^
=> Δ N M F đồng dạng Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A 2
Từ (1) và (2) ta có NH = HM
3) Chứng minh: H B 2 H F 2 − EF M F = 1 .
Xét Δ M AF và Δ M E A có: A M E ^ chung, M A F ^ = M E A ^
suy ra Δ M AF đồng dạng với Δ M E A
⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2 (3)
Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 và A F H ^ = A H N ^ = 90 0 ⇒ A F E ^ = B F H ^
Δ A E F và Δ H B F có: E F A ^ = B F H ^ ; F E A ^ = F B A ^
suy ra Δ A E F ~ Δ H B F
⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2 (4)
Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1
E M O N H
a/
Ta có
\(\widehat{EMO}=\widehat{ENO}\) => EMON là tứ giác nội tiếp
=> E; M; O; N cùng nằm trên 1 đường tròn có tâm là trung điểm của EO và bán kính là EO/2
b/
Xét tg vuông EMO và tg vuông ENO có
EM=EN (hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
EO chung
=> tg EMO = tg ENO (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
=> \(\widehat{MEO}=\widehat{NEO}\)
Xét tg EMN có
EM=EN (cmt) => tg EMN cân tại E
\(\widehat{MEO}=\widehat{NEO}\) (cmt) => OE là phân giác của \(\widehat{MEN}\)
=> \(OE\perp MN\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
a, Xét tứ giác EMON có ^EMO + ^ENO = 1800
mà 2 góc này đối
Vậy tứ giác EMON nt 1 đường tròn hay E;M;O;N thuộc 1 đường tròn
bán kính là OE/2
b, Vì ME = MN ( 2 tiếp tuyến cắt nhau )
OM = ON
Vậy EO là đường trung trực đoạn MN
Vậy OE vuông MN