Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.
Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\) cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.
Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\) Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
#)Giải :
Có \(\widehat{AMB}=90^o\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{OMA}+\widehat{OMT}=\widehat{AMB}=90^o\)
MF là tiếp tuyến của (O) \(\Rightarrow\widehat{OMF}=90^o\Rightarrow\widehat{OMT}+\widehat{TMF}=\widehat{OMF}=90^o\)
\(\Rightarrow\widehat{OMA}=\widehat{TMF}\left(1\right)\)
Dễ c/m \(\Delta BAM~\Delta BOT\Rightarrow\left(g.g\right)\widehat{OAM}=\widehat{OTB}\)
Mà \(\widehat{OCB}=\widehat{MTF}\left(đđ\right)\Rightarrow\widehat{OAM}=\widehat{MTF}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\Delta OMA~\Delta FMT\left(g.g\right)\Rightarrow\frac{MA}{MT}=\frac{OA}{OF}\Rightarrow MA.FT=OA.MT\)
b) Có \(\Delta OMA~\Delta FMT\left(cmt\right)\)
Mà \(\Delta OMA\) cân tại O
\(\Rightarrow\Delta FMT\) cân tại F
\(\Rightarrow FM=FT\) (cặp cạnh t/ứng = nhau)
Lại có \(\Delta TME\) vuông tại M \(\Rightarrow FM=FE\)
c) Dễ c/m được TA = TB
Mà \(\Delta MTE~\Delta OTB\left(g.g\right)\Rightarrow\frac{ME}{OB}=\frac{TE}{TB}\Rightarrow ME.TB=OB.TE\Rightarrow ME.TA=2R^2\left(TE=2MF=2R\right)\)
Đáp án:
a) góc ACD = 60o60o
b) CD=3+3√3
Giải thích các bước giải:
a) Vì AB=OA=OB nên tam giác OAB là tam giác đều
⇒ góc OAB=góc OBA= 60o60o
⇒ góc OBC=180o180o -60o60o=120o120o
Xét tam giác OBC có OC=AB=OB ⇒ tam giác OBC cân tại B
⇒ góc BOC= góc BCO
Mà góc BOC+góc BCO=180o180o -120o120o=60o60o
⇒ góc BCO hay góc ACD bằng 60o60o
b) Kẻ OH ⊥AB
ta có: OH= 3√323√32
HC=HB+BC= 3232 +3=9292
⇒ OC= 2√OH2+HC2OH2+HC22 =3√3
⇒ CD=CO+OC=3+3√3
tại sao OA = AB = OB