Cho đường tròn tâm O bán kính R , dây cung AB = R . Trên tia đối của tia BA lấy điểm C s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án:

a) góc ACD = 60o60o

b) CD=3+3√3

Giải thích các bước giải:

a) Vì AB=OA=OB nên tam giác OAB là tam giác đều

⇒ góc OAB=góc OBA= 60o60o

⇒ góc OBC=180o180o -60o60o=120o120o

Xét tam giác OBC có OC=AB=OB ⇒ tam giác OBC cân tại B

⇒ góc BOC= góc BCO

Mà góc BOC+góc BCO=180o180o -120o120o=60o60o

⇒ góc BCO hay góc ACD bằng 60o60o

b) Kẻ OH ⊥AB

ta có: OH= 3√323√32

HC=HB+BC= 3232 +3=9292

⇒ OC= 2√OH2+HC2OH2+HC22 =3√3

⇒ CD=CO+OC=3+3√3

28 tháng 6 2021

tại sao OA = AB = OB

22 tháng 9 2015

Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.

Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\)  cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.

Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\)  Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
 

26 tháng 10 2016

Giúp mình tra lời với

 

31 tháng 7 2019

#)Giải :

Có \(\widehat{AMB}=90^o\) là góc nội tiếp chắn nửa đường tròn  

\(\Rightarrow\widehat{OMA}+\widehat{OMT}=\widehat{AMB}=90^o\)

MF là tiếp tuyến của (O) \(\Rightarrow\widehat{OMF}=90^o\Rightarrow\widehat{OMT}+\widehat{TMF}=\widehat{OMF}=90^o\)

\(\Rightarrow\widehat{OMA}=\widehat{TMF}\left(1\right)\)

Dễ c/m \(\Delta BAM~\Delta BOT\Rightarrow\left(g.g\right)\widehat{OAM}=\widehat{OTB}\)

Mà \(\widehat{OCB}=\widehat{MTF}\left(đđ\right)\Rightarrow\widehat{OAM}=\widehat{MTF}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\Delta OMA~\Delta FMT\left(g.g\right)\Rightarrow\frac{MA}{MT}=\frac{OA}{OF}\Rightarrow MA.FT=OA.MT\)

b) Có \(\Delta OMA~\Delta FMT\left(cmt\right)\)

Mà \(\Delta OMA\) cân tại O

\(\Rightarrow\Delta FMT\) cân tại F

\(\Rightarrow FM=FT\) (cặp cạnh t/ứng = nhau)

Lại có \(\Delta TME\) vuông tại M \(\Rightarrow FM=FE\)

c) Dễ c/m được TA = TB

Mà \(\Delta MTE~\Delta OTB\left(g.g\right)\Rightarrow\frac{ME}{OB}=\frac{TE}{TB}\Rightarrow ME.TB=OB.TE\Rightarrow ME.TA=2R^2\left(TE=2MF=2R\right)\)