Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2>=0 Dấu "=" chỉ xảy ra khi x=0
-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0
*) bđt Cô-si
cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b
tổng quát: cho n số không âm a1;a2;....;an
ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an
*) bđt Bunhiacopxki
cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc
tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn
ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)
dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)
quy ước nếu mẫu bằng 0 thì tử bằng 0
(1) 2(a2+b2) >= (a+b)2 >= 4ab
(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)
(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có
\(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)
\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)
do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)
áp dụng bđt Cô-si cho 2 số dương ta có:
\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)
do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB
vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB
A B C P Q I R D t
Ta có: \(\widehat{DQB}=\widehat{CQP}\)(2 góc đối đỉnh).
Dễ thấy CA và CB là hai tiếp tuyến của (I) \(\Rightarrow CP=CQ\)nên tam giác CPQ cân tại C
\(\Rightarrow\widehat{CQP}=\frac{180^0}{2}-\frac{\widehat{C}}{2}=90^0-\frac{\widehat{C}}{2}\Rightarrow\widehat{DQB}=90^0-\frac{\widehat{C}}{2}\left(1\right)\)
Lại có: \(\widehat{DIB}=\widehat{IAB}+\widehat{IBA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}=\frac{1}{2}\left(180^0-\widehat{C}\right)=90^0-\frac{\widehat{C}}{2}\left(2\right)\)
Từ (1) và (2) suy ra: \(\widehat{DQB}=\widehat{DIB}\)=> Tứ giác BIQD nội tiếp đường tròn
=> \(\widehat{BDI}=\widehat{BQI}\). Mà \(\widehat{BQI}=90^0\)\(\Rightarrow\widehat{BDI}=90^0\)
Do đó \(AD\perp BD\)tại D hay \(AI\perp BD\)tại D
Ta thấy tam giác ABC vuông tại A có A; B cố định => \(\widehat{BAC}\)không đổi nên tia phân giác AI của \(\widehat{BAC}\)cố định
Do BD vuông góc với AI tại D (cmt) => BD cố định , vậy nên điểm D là điểm cố định.
Mà PQ đi qua D => PQ luôn đi qua 1 điểm D cố định khi C chuyển động trên tia At (đpcm).