K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O

mà OH là trung tuyến

nên OH vuông góc BC

góc OHA+góc ONA=180 độ

=>OHAN nội tiếp

góc OMA+góc ONA=90+90=180 độ

=>OMAN nội tiếp

b: Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc BAM chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC

 

1 tháng 4 2023

bài đầy đủ đây bạn nhé

https://www.youtube.com/watch?v=DiI4Jz-LYQ4

12 tháng 5 2019

a, b, c HS tự làm

d, Gợi ý: G' ÎOI mà  I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)

29 tháng 5 2021

1) Trong (O) có BC là dây cung không đi qua O,có H là trung điểm BC

\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\angle OMA=90\Rightarrow OMAH\) nội tiếp

2) Ta có: \(\Delta AMO\) vuông tại M có \(AO\bot MI\Rightarrow AM^2=AI.AO\)

29 tháng 5 2021

1.

Theo giả thiết: \(H\) là trung điểm BC

\(\Rightarrow OH\perp BC\Leftrightarrow\widehat{OHA}=90^o\)

Lại có: \(AM\perp OM\Leftrightarrow\widehat{OMA}=90^o\)

\(\Rightarrow\widehat{OHA}+\widehat{OMA}=180^o\)

\(\Rightarrow AMOH\) nội tiếp 

Hay \(A,M,O,H\) cùng thuộc đường tròn đường kính OA

24 tháng 8 2019

Theo giả thiết AMO = ANO = AIO = 90o = > 5 điểm A, O, M, N, I thuộc đường tròn đường kính AO 0,25

=> AIN = AMN, AIM = ANM (Góc nội tiếp cùng chắn một cung)

AM = AN => ∆AMN cân tại A => AMN = ANM

=> AIN = AIM => đpcm

16 tháng 4 2021

1, Xét $(O)$ có các tiếp tuyến $AM;AN$ 

suy ra $\widehat{AMO}=\widehat{ANO}=90^o;AM=AN;AO$ là phân giác $\widehat{MAN}$

nên $\widehat{AMO}+\widehat{ANO}=180^o$

suy ra tứ giác $AMON$ nội tiếp (tổng 2 góc đối =180 độ)

2, Ta có: $AM=AN⇒ΔAMN$ cân tại $A$
có đường phân giác $AO$
$⇒AO$ đồng thời là đường trung trực tam giác $AMN$

$⇒AO⊥MN$ tại $H$

3. Xét $ΔAMO$ vuông tại $M$

$MH$ là đường cao

Nên $AH.AO=AM^2$ (hệ thức lượng trong tam giác vuông)

Xét $(O)$ có: Tiếp tuyến $AM$

nên $\widehat{AMB}=\widehat{MCB}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $BM$)

hay $\widehat{AMB}=\widehat{ACM}$ 

Xét tam giác $AMB$ và tam giác $ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

Nên  tam giác $AMB$ và tam giác $ACM$ đồng dạng (g.g)

suy ra $\dfrac{AB}{AM}=\dfrac{AM}{AC}$

nên $AM^2=AB.AC$

Từ đó suy ra $AH.AO=AB.AC$

1 tháng 5 2022

hình đâu bn ơi 

7 tháng 8 2019

2 A K = 1 A B + 1 A C ⇔ 2 A B . A C = A K ( A B + A C ) ⇔ A B . A C = A K . A I

(Do AB+ AC = 2AI)

∆ABN  đồng dạng với ∆ANC => AB.AC = AN2

∆AHK đồng dạng với ∆AIO => AK.AI = AH.AO

Tam giác ∆AMO vuông tại M có đường cao MH => AH.AO = AM2

=> AK.AI = AM2 . Do AN = AM => AB.AC = AK.AI