Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOBC cân tại O
mà OH là trung tuyến
nên OH vuông góc BC
góc OHA+góc ONA=180 độ
=>OHAN nội tiếp
góc OMA+góc ONA=90+90=180 độ
=>OMAN nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc BAM chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC
bài đầy đủ đây bạn nhé
https://www.youtube.com/watch?v=DiI4Jz-LYQ4
a, b, c HS tự làm
d, Gợi ý: G' ÎOI mà I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)
1) Trong (O) có BC là dây cung không đi qua O,có H là trung điểm BC
\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\angle OMA=90\Rightarrow OMAH\) nội tiếp
2) Ta có: \(\Delta AMO\) vuông tại M có \(AO\bot MI\Rightarrow AM^2=AI.AO\)
1.
Theo giả thiết: \(H\) là trung điểm BC
\(\Rightarrow OH\perp BC\Leftrightarrow\widehat{OHA}=90^o\)
Lại có: \(AM\perp OM\Leftrightarrow\widehat{OMA}=90^o\)
\(\Rightarrow\widehat{OHA}+\widehat{OMA}=180^o\)
\(\Rightarrow AMOH\) nội tiếp
Hay \(A,M,O,H\) cùng thuộc đường tròn đường kính OA
Theo giả thiết AMO = ANO = AIO = 90o = > 5 điểm A, O, M, N, I thuộc đường tròn đường kính AO 0,25
=> AIN = AMN, AIM = ANM (Góc nội tiếp cùng chắn một cung)
AM = AN => ∆AMN cân tại A => AMN = ANM
=> AIN = AIM => đpcm
1, Xét $(O)$ có các tiếp tuyến $AM;AN$
suy ra $\widehat{AMO}=\widehat{ANO}=90^o;AM=AN;AO$ là phân giác $\widehat{MAN}$
nên $\widehat{AMO}+\widehat{ANO}=180^o$
suy ra tứ giác $AMON$ nội tiếp (tổng 2 góc đối =180 độ)
2, Ta có: $AM=AN⇒ΔAMN$ cân tại $A$
có đường phân giác $AO$
$⇒AO$ đồng thời là đường trung trực tam giác $AMN$
$⇒AO⊥MN$ tại $H$
3. Xét $ΔAMO$ vuông tại $M$
$MH$ là đường cao
Nên $AH.AO=AM^2$ (hệ thức lượng trong tam giác vuông)
Xét $(O)$ có: Tiếp tuyến $AM$
nên $\widehat{AMB}=\widehat{MCB}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $BM$)
hay $\widehat{AMB}=\widehat{ACM}$
Xét tam giác $AMB$ và tam giác $ACM$ có:
$\widehat{AMB}=\widehat{ACM}$
$\widehat{A}$ chung
Nên tam giác $AMB$ và tam giác $ACM$ đồng dạng (g.g)
suy ra $\dfrac{AB}{AM}=\dfrac{AM}{AC}$
nên $AM^2=AB.AC$
Từ đó suy ra $AH.AO=AB.AC$
2 A K = 1 A B + 1 A C ⇔ 2 A B . A C = A K ( A B + A C ) ⇔ A B . A C = A K . A I
(Do AB+ AC = 2AI)
∆ABN đồng dạng với ∆ANC => AB.AC = AN2
∆AHK đồng dạng với ∆AIO => AK.AI = AH.AO
Tam giác ∆AMO vuông tại M có đường cao MH => AH.AO = AM2
=> AK.AI = AM2 . Do AN = AM => AB.AC = AK.AI