K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

.

 

25 tháng 5

Câu b ý 2 làm sao thế

24 tháng 4 2020

Hùng NguyễnPhạm Lan HươngNguyễn Lê Phước ThịnhMai.T.LoanHồng PhúcAkai Haruma

11 tháng 5 2019

ta có góc MBO =90

góc MCO=90

MBO+MCO=90+90=180

Vậy tứ giác MBOC nội tiếp

Xét \(\Delta\)MBK và \(\Delta\) MNB

M chung

MBK=BNK(cùng chắn cung BK)

do đó\(\Delta\) MBK\(\sim\) \(\Delta\)MNB

\(\frac{MB}{MN}\)=\(\frac{MK}{MB}\) ⇒MB2=MN.MK

12 tháng 5 2019

thôi mình giải xong r cảm ơn các bạn

5 tháng 5 2017

c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)

F là giao điểm của DK với (O)\(\left(F\ne D\right)\)

Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)

\(\Rightarrow\)Tứ giác OCAK nội tiếp.

\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)

Mà \(\widehat{COK}+\widehat{COF}=180^0\)

\(\Rightarrow\widehat{CAK}=\widehat{COF}\)

\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))

Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)

Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)

\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)

\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)

\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)

\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)

\(\Rightarrow\Delta CAQ\)cân tại A.

Lại có: AC=AB (Tính chất tiếp tuyến)

AB=AP(\(\Delta ABP\) cân tại A)

\(\Rightarrow AP=AC=AB=AQ\)

\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)

\(\Rightarrow\Delta CPQ\)vuông tại C.

=>F,C,P thẳng hàng.

=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))

=> F là trực tâm của \(\Delta DPQ\)

=> F trùng với H.

Mà F thuộc (O)

=> H thuộc (O)

6 tháng 5 2017

Trực tâm H chứ bạn?

5 tháng 6 2022

undefinedundefined

3: góc MHO=góc MAO=góc MBO=90 độ

=>M,A,O,H,B cùng nằm trên đường tròn đường kính OM

=>góc HAB=góc HMB

CE//MB

=>góc HCE=góc HMB=góc HAB

=>ACEH nội tiếp

=>góc CHE=góc CAE

mà góc CAE=góc CDB

nên gó CHE=góc CDB

=>HE//DB

Gọi K là giao của CE và DB

Xét ΔCKD có 

H là trung điểm của CD

HE//KD

=>E là trung điểm của CK

=>EC=EK

Vì CK//MB

nên CE/MF=DE/DF=EK/FB

mà CE=EK

nên MF=FB

=>F là trung điểm của MB