Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta COM\)và \(\Delta CED\)có:
\(\widehat{COM}=\widehat{CED}=90^0\)
\(\widehat{ECD}\): góc chúng
Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)
\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)
\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)
\(=R^2+R^2=2R^2\)(2)
Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)
1: góc CFG=1/2(sđ cung CB+sđ cung AE)
=1/2(sđ cung AC+sđ cung AE)
=1/2*sđ cung CE
=góc CHE
=>góc CFG=góc CHE
=>180 độ-góc EFG=góc CHE
=>góc EFG+góc EHG=180 độ
=>EFGH nội tiếp
1/
Ta có
sđ cung AC = sđ cung BC (1)
\(sđ\widehat{CFG}=\dfrac{1}{2}\left(sđcungBC+sđcungAE\right)\) (góc có đỉnh ở trong hình tròn) (2)
\(sđ\widehat{CHE}=\dfrac{1}{2}sđcungCAE=\dfrac{1}{2}\left(sđcungAC+sđcungAE\right)\) (góc nội tiếp) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{CFG}=\widehat{CHE}\)
Ta có
\(\widehat{CFG}+\widehat{EFG}=\widehat{EFC}=180^o\)
\(\Rightarrow\widehat{CHE}+\widehat{EFG}=180^o\)
=> EFGH là tứ giác nội tiếp (Tứ giác có hai góc đối bù nhau là tứ giác nội tiếp)
2/
sđ cung AC = sđ cung BC (4)
\(sđ\widehat{AGC}=\dfrac{1}{2}\left(sđcungAC+sđcungBH\right)\) (5) (góc có đỉnh ở trong hình tròn)
\(sđ\widehat{CHy}=\dfrac{1}{2}sđcungCBH=\dfrac{1}{2}\left(sđcungBC+sđcungBH\right)\) (6) (Góc giữa tiếp tuyến và dây cung)
Từ (4) (5) (6) \(\Rightarrow\widehat{AGC}=\widehat{CHy}\)
Mà AC = AG (gt) => tgACG cân tại A \(\Rightarrow\widehat{AGC}=\widehat{ACG}\)
\(\Rightarrow\widehat{ACG}=\widehat{CHy}\) mà 2 góc trên ở vị trí so le trong => xy//AC