K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

27 tháng 3 2020

sai bét tè lè nhé lún

a: Xét (O) có

MA,MB là tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

Xét ΔOAM vuông tại A có AI là đường cao

nên OI*OM=OA^2=R^2

b: Xét ΔOIF vuông tại I và ΔOEM vuông tại E có

góc IÒ chung

Do đó: ΔOIF đồng dạng với ΔOEM

=>OI/OE=OF/OM

=>OE*OF=OI*OM=OA^2=OC^2=R^2

=>FC là tiếp tuyến của (O)

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)

a: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>I là trung điểm của AB

Xét ΔMAK và ΔMCA có

góc MAK=góc MCA

góc AMK chung

=>ΔMAK đồng dạng với ΔMCA

=>MA/MC=MK/MA

=>MA^2=MC*MK=MI*MO

=>MC/MO=MI/MK

=>MC/MI=MO/MK

=>ΔMCO đồng dạng với ΔMIK

28 tháng 12 2023

loading...

b: Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

=>CA\(\perp\)AB tại A

=>CA\(\perp\)BE tại A

Ta có: \(\widehat{OAE}=\widehat{OAC}+\widehat{EAC}=\widehat{OAC}+90^0\)

\(\widehat{MAC}=\widehat{MAO}+\widehat{OAC}=\widehat{OAC}+90^0\)

Do đó: \(\widehat{OAE}=\widehat{MAC}\)

Xét tứ giác CKAE có \(\widehat{CKE}=\widehat{CAE}=90^0\)

nên CKAE là tứ giác nội tiếp

=>\(\widehat{ACK}=\widehat{AEK}\)

=>\(\widehat{ACM}=\widehat{AEO}\)

Xét ΔAMC và ΔAOE có

\(\widehat{ACM}=\widehat{AEO}\)

\(\widehat{MAC}=\widehat{OAE}\)

Do đó: ΔAMC đồng dạng với ΔAOE

=>\(\dfrac{AM}{AO}=\dfrac{AC}{AE}\)

=>\(AM\cdot AE=AO\cdot AC\)

loading...

loading...