Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha. a) CM tứ giác MIOD là tứ giác nt, suy ra 4 điểm M,I,O,D cùng nằm trên đường tròn đk OM. Cm tiếp cho tứ giác MCOD là TGNT, suy ra 4 điểm M,C,O,D cùng nằm trên đtròn đk OM, vì thế 5 điểm M,I,O,C,D cùng nằm trên 1 đtròn, suy ra MCID nt c) Vì MCID nt suy ra \(\widehat{MIC}\)=\(\widehat{MDC}\), \(\widehat{MID}=\widehat{MCD}\). mà \(\widehat{MCD}=\widehat{MDC}\) nên 2 góc còn lại bằng nhau, ta đc ĐPCM. Còn câu b à d bn đợi xíu nha, nếu đc mk đăng lên cho nha
a) dễ dàng chứng minh được MD2= MC2 = MA.MB ( bằng cách kẻ đường thẳng từ M qua O và chứng minh tam giác đồng dạng)
MC2=MA.MB => tam giác MAC đồng dạng với tam giác MCB => \(\frac{MA}{MC}=\frac{AC}{BC}\)(1)
MD2=MA.MB => tam giác MAD đồng dạng với tam giác MDB => \(\frac{MA}{MD}=\frac{AD}{BD}\)(2)
TỪ (1) và (2) => \(\frac{AC}{BC}=\frac{AD}{BD}\)=> AC.BD=AD.BC
b)
xét tam giác vuông MOE với đường cao OC; Đặt OM=x;
\(\frac{1}{OE^2}+\frac{1}{OM^2}=\frac{OM^2+OE^2}{OM^2.OE^2}=\frac{ME^2}{OC^2.ME^2}\)=\(\frac{1}{OC^2}\)=>\(\frac{1}{OE^2}+\frac{1}{x^2}=\frac{1}{R^2}=>OE=\frac{x.R}{\sqrt{x^2-R^2}}\)
Tam giác MCO=tam giác MDO( vì OC=OD;OM cạnh chung và góc MCO=góc MDO=90o) => góc CMO = góc DMO
tam giác MEF có MO vừa là đường cao vừa là phân giác nên MO cũng là đường trung tuyến của EF => EF=2OE
diện tích tam giác MEF là \(\frac{1}{2}OM.\)EF=OE.OM=\(\frac{x.R}{\sqrt{x^2-R^2}}x\)=R.\(\frac{x^2}{\sqrt{x^2-R^2}}\)\(\ge R\).R\(\sqrt{2}\)=R2\(\sqrt{2}\)
Thật vậy \(\frac{x^2}{\sqrt{x^2-R^2}}\ge2\sqrt{R}< =>\frac{x^4}{x^2-R^2}\ge4R\)<=> (x2-2R)2\(\ge0\)(đúng)
=> diện tích MEF nhỏ nhất khi x2=2R <=> x=OM =\(\sqrt{2R}\)hay M là giao của (O;\(\sqrt{2R}\)) và AB (có 2 điểm M thỏa mãn)