Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy tg AOB ~ tg COI => OA/OC = OB/OI => OA.OI = OB.OC = R^2 (1)
b)
Trong (O) : ^CED = ^CBD ( cùng chắn cung CD) hay ^CEK = ^CAB (2)
Trong (ABC) : ^CIA = ^CAB (cùng chắn cung CA) hay ^CIK = ^CAB (3)
Từ (2) và (3) => ^CEK = ^CIK => CEIK nội tiếp
Vì CEKI nội tiếp => AK.AI = AC.AE (4)
Mà trong (O) có cát tuyến ACE nên có hệ thức : AC.AE = OA^2 - R^2 = 4R^2 - R^2 = 3R^2 (5)
Mặt khác từ (1) => OI = R^2/OA = R^2/2R = R/2 => AI = OA + OI = 2R + R/2 = 5R/2 (6)
Từ (4) ; (5); (6) => AK = AC.AE/AI = 3R^2/(5R/2) = 6R/5
c) OA cắt (O) tại M, N (M nằm giữa A và K) =>
MK = AK - AM = 6R/5 - R = R/5
NK = AN - AK = 3R - 6R/5 = 9R/5
Vì EMDN nội tiếp (O) nên tương tự câu a) ta có : DK.EK = MK.NK = 9R^2/25 (7)
Mặt khác nếu trên đoạn OK lấy J sao cho JK = 3R/10 => J cố định và AK.JK = (6R/5).(3R/10) = 9R^2/25 (8)
Từ (7) và (8) => AK.JK = DK.EK => ADJE nội tiếp hay đường tròn ngoại tiếp tg ADE luôn đi qua AJ hay tâm của có luôn chạy trên đường thẳng trung trực của đoạn AJ cố định xác định như trên
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
cậu vẽ được hình và làm được câu nào rồi ?