Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự làm
b, HS tự làm
c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này
d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N
Đặt BH=2R; CH= 2R’
∆IOM vuông tại M có:
I M 2 = I O 2 - O M 2 = R + r 2 - R - r 2 = 4 R r
Tương tự , ∆ION có I N 2 = 4 R ' r
Suy ra IM+IN=EF=AH
Vậy 2 R r + 2 R ' r = 2 R R '
=> r R + R ' = R R '
=> r = R R ' R + R ' 2
Bài 1:
a: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
Xét tứ giác BICD có
BI//CD(cùng vuông góc với AC)
CI//BD(cùng vuông góc với AB)
Do đó: BICD là hình bình hành
Bài 2:
a: Xét (O) có
MN=EF
OH là khoảng cách từ O đến dây MN
OK là khoảng cách từ O đến dây EF
Do đó: OH=OK
Xét ΔAHO vuông tại H và ΔAKO vuông tại K có
AO chung
OH=OK
Do đó: ΔAHO=ΔAKO
Suy ra: AH=AK
b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có
OM=OE
OH=OK
Do đó: ΔOHM=ΔOKE
Suy ra: HM=KE
Ta có: AM+MH=AH
AE+EK=AK
mà AH=AK
và HM=KE
nên AM=AE
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}=\dfrac{5}{10}=\dfrac{1}{2}\)
nên \(\widehat{ABC}=60^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2;CH\cdot CB=CA^2\)
=>\(BH\cdot10=5^2=25;CH\cdot10=\left(5\sqrt{3}\right)^2=75\)
=>BH=25:10=2,5(cm); CH=75/10=7,5(cm)
b:
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA=\sqrt{5^2-2,5^2}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
Xét (I) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE\(\perp\)AB tại E
Xét (I) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF\(\perp\)AC tại F
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>EF=AH
=>\(EF=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
c) Xét đường tròn (I) có đường kính AH \(\Rightarrow\widehat{AEH}=\widehat{AFH}=90^o\).
Tam giác AHB vuông tại H có đường cao HE nên \(AH^2=AE.AB\). Tương tự, ta có \(AE.AB=AF.AC=AH^2\)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Tam giác AEF và ACB có:
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\left(cmt\right);\widehat{BAC}\) chung
\(\Rightarrow\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ACB}\)
\(\Rightarrow\) Tứ giác BEFC nội tiếp
Gọi tâm đường tròn ngoại tiếp tứ giác BEFC là J.
Khi đó, ta có S thuộc trục đẳng phương AM của (O) và (I), đồng thời S cũng thuộc trục đẳng phương BC của (O) và (J), do đó S thuộc trục đẳng phương EF của (I) và (J) hay S, E, F thẳng hàng. (đpcm)