K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:OI=OA-IA=R-r

nen (O) tiếp xúc (I) tại A

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

Xét (I) có

ΔADO nội tiếp

AO là đường kính

Do đó: ΔADO vuông tại D

=>OD//CB

Xét ΔACBcó DO//CB

nên AD/AC=AO/AB=1/2

=>D là trung điểm của AC

Xét ΔAOC có AI/AO=AD/AC

nên ID//OC và ID=OC/2

 

12 tháng 12 2022

a: IA=OA-OI=R-r

nên (O) tiếp xúc với (I)

b: góc IDA=góc IAD=góc OAC

góc OAC=góc OCA

Do đó: góc IDA=góc OCA

=>ID//OC

Xét ΔAOC có

I là trung điểm của AO

ID//OC

DO đó; D là trung điểm của AC

Xet ΔACB có AO/AB=AD/AC

nên OD//BC

29 tháng 5 2017

I A B O H D E C C'

  1. Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
  2. do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
  3. Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
17 tháng 11 2017

Bạn kia làm đúng rồiV^V

9 tháng 7 2019

A B C O I D M K S H

a) Ta có CA,CM là các tiếp tuyến từ C tới đường tròn (O) => OC là phân giác của ^AOM => ^MOC = ^AOC

Ta thấy ^CMD là góc chắn nửa đường tròn (I) => ^CMD = 900 => ^CMD + ^CMO = 1800

=> 3 điểm D,M,O thẳng hàng => ^DOC = ^MOC. Mà ^MOC = ^AOC nên ^DOC = ^AOC

Hai đường tròn (O),(I) cùng tiếp xúc với a => CD // AB (Cùng vuông góc với a)

Do đó ^AOC = ^DCO (So le trong) => ^DOC = ^DCO => \(\Delta\)ODC cân tại D

Lại có DK vuông góc OC tại K (Vì ^DKC chắn nửa đường tròn) => K là trung điểm OC (đpcm).

b) Gọi đường thẳng qua D vuông góc với BC cắt BC,AB lần lượt tại H,S.

Dễ thấy điểm H nằm trên đường tròn (I) => ^HMO = ^HCD = ^HBO (Do CD // AB)

=> Tứ giác HOBM nội tiếp => ^OHB = ^OMB => 900 - ^OHB = 900 - ^OMB

=> ^OHS = 900 - ^ABM = ^MAB = ^ACO (Cùng phụ ^CAM)    (1)

Ta lại có ^SHK = ^DCK = ^SOK (Vì AB // CD) => Tứ giác KHOS nội tiếp => ^OHS = ^OKS (2)

Từ (1) và (2) suy ra ^ACO = ^OKS => KS // AC. Xét \(\Delta\)CAO có:

K là trung điểm cạnh OC (cmt), KS // AC (cmt), S thuộc OA => S là trung điểm cạnh OA

Do 2 điểm O,A cố định nên S cũng cố định. Mà đường thẳng qua D vuông góc BC cắt OA tại S

Nên ta có ĐPCM.

8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp 

28 tháng 4 2023

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.