K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Xét tam giác $AOK$ và $BOK$ có:

$\widehat{OKA}=\widehat{OKB}=90^0$

$OK$ chung 

$OA=OB=R$ 

$\Rightarrow \triangle AOK=\triangle BOK$ (ch-cgv)

$\Rightarrow \widehat{AOK}=\widehat{BOK}$

b. Xét tam giác $ACO$ và $BCO$ có:

$AO=BO$ 

$\widehat{O_1}=\widehat{O_2}$ (cm ở phần a)

$CO$ chung

$\Rightarrow \triangle ACO=\triangle BCO$ (c.g.c)

$\Rightarrow \widehat{OBC}=\widehat{OAC}=90^0$

$\Rightarrow OB\perp BC$ nên $CB$ là tiếp tuyến của $(O)$

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Hình vẽ:

30 tháng 11 2021

a: Xét ΔOAK vuông tại K và ΔOBK vuông tại K có

OA=OB

OK chung

Do đó: ΔOAK=ΔOBK

Suy ra: \(\widehat{AOK}=\widehat{BOK}\)

22 tháng 7 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

Gọi $T$ là giao $OC$ và $AB$

Vì $OA=OB$ nên $OAB$ là tam giác cân tại $O$

$\Rightarrow$ đường cao $OT$ đồng thời là đường trung tuyến 

$\Rightarrow T$ là trung điểm $AB$

Như vậy, $OC\perp AB$ tại trung điểm $T$ của $AB$ nên $OC$ là đường trung trực của $AB$

$\Rightarrow CA=CB$.

$\triangle CBO=\triangle CAO$ (c.c.c)

$\Rightarrow \widehat{CBO}=\widehat{CAO}=90^0$

$\Rightarrow CB\perp OB$ nên $CB$ là tiếp tuyến của $(O)$ tại $C$.

 

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Hình vẽ:

22 tháng 8 2021

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC=OA2:OI=152:9=25 cm.

22 tháng 8 2021

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC = OA^2 : OI = 15^2 : 9 = 25 cm.

30 tháng 7 2021

CO cắt AB tại D

Vì \(OA=OB=R\Rightarrow\Delta OAB\) cân tại O có \(OD\bot AB\Rightarrow D\) là trung điểm AB

\(\Rightarrow\) A và B đối xứng qua OC \(\Rightarrow\left\{{}\begin{matrix}\angle OAB=\angle OBA\\\angle CAB=\angle CBA\end{matrix}\right.\)

\(\Rightarrow\angle OAB+\angle CAB=\angle OBA+\angle CBA\Rightarrow\angle CAO=\angle CBO\)

\(\Rightarrow\angle CBO=90\Rightarrow CB\) là tiếp tuyến 

 

 

2 tháng 5 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy OC = 25 cm

27 tháng 8 2017

a, ∆OAC = ∆OBC (c.g.c)

=>  O B C ^ - O A B ^ = 90 0

=> đpcm

b, Sử dụng hệ thức lượng trong tam giác vuông OBC tính được OC=25cm

a: ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

góc AOC=góc BOC

OC chung

Do đó: ΔOAC=ΔOBC

=>góc OBC=90 độ

=>CB là tiếp tuyến của (O)

b: Xét (O) có

ΔBAD nôi tiếp

BD là đường kính

Do đó:ΔBAD vuông tại A

=>AD vuông góc với BA

=>AD//CB

a: \(AI=\sqrt{10^2-6^2}=8\left(cm\right)\)

AB=2*AI=16cm

b: ΔOAB cân tại O

mà OI là đường cao

nên OI là phân giác của góc AOB

Xét ΔOAM và ΔOBM có

OA=OB

góc AOM=góc BOM

OM chung

Do đó: ΔOAM=ΔOBM

=>góc OBM=90 độ

=>MB là tiêp tuyến của (O)