K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

Gọi $T$ là giao $OC$ và $AB$

Vì $OA=OB$ nên $OAB$ là tam giác cân tại $O$

$\Rightarrow$ đường cao $OT$ đồng thời là đường trung tuyến 

$\Rightarrow T$ là trung điểm $AB$

Như vậy, $OC\perp AB$ tại trung điểm $T$ của $AB$ nên $OC$ là đường trung trực của $AB$

$\Rightarrow CA=CB$.

$\triangle CBO=\triangle CAO$ (c.c.c)

$\Rightarrow \widehat{CBO}=\widehat{CAO}=90^0$

$\Rightarrow CB\perp OB$ nên $CB$ là tiếp tuyến của $(O)$ tại $C$.

 

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Hình vẽ:

22 tháng 7 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

27 tháng 8 2017

a, ∆OAC = ∆OBC (c.g.c)

=>  O B C ^ - O A B ^ = 90 0

=> đpcm

b, Sử dụng hệ thức lượng trong tam giác vuông OBC tính được OC=25cm

a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C

ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b:ΔOAC=ΔOBC

=>CB=CA

=>C nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OC là đường trung trực của BA

=>OC\(\perp\)AB

mà OC//AD

nên AB\(\perp\)AD

=>ΔABD vuông tại A

Ta có: ΔABD vuông tại A

=>ΔABD nội tiếp đường tròn đường kính DB

mà ΔABD nội tiếp (O)

nên O là trung điểm của DB

=>D,O,B thẳng hàng

Xét ΔAKD vuông tại K và ΔCAO vuông tại A có

\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)

Do đó: ΔAKD\(\sim\)ΔCAO

 

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

=>OM là phân giác của góc COD

=>\(\widehat{COM}=\widehat{DOM}\)

Xét ΔOCM và ΔODM có

OC=OD

\(\widehat{COM}=\widehat{DOM}\)

OM chung

Do đó: ΔOCM=ΔODM

=>\(\widehat{OCM}=\widehat{ODM}\)

mà \(\widehat{ODM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

30 tháng 7 2021

CO cắt AB tại D

Vì \(OA=OB=R\Rightarrow\Delta OAB\) cân tại O có \(OD\bot AB\Rightarrow D\) là trung điểm AB

\(\Rightarrow\) A và B đối xứng qua OC \(\Rightarrow\left\{{}\begin{matrix}\angle OAB=\angle OBA\\\angle CAB=\angle CBA\end{matrix}\right.\)

\(\Rightarrow\angle OAB+\angle CAB=\angle OBA+\angle CBA\Rightarrow\angle CAO=\angle CBO\)

\(\Rightarrow\angle CBO=90\Rightarrow CB\) là tiếp tuyến 

 

 

22 tháng 8 2021

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC=OA2:OI=152:9=25 cm.

22 tháng 8 2021

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC = OA^2 : OI = 15^2 : 9 = 25 cm.