K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

a) Định nghĩa lại H là trung điểm OA. Ta thấy OQ là đường trung bình của tam giác ABF nên OQ//BF. Hơn nữa \(BF\perp BE\) nên \(OQ\perp BE\). Lại có \(BA\perp QE\) nên O là trực tâm của tam giác BEQ \(\Rightarrow OE\perp BQ\)

 Mặt khác, PH là đường trung bình của tam giác AOE nên PH//OA. Do đó, \(PH\perp BQ\). Lại thấy rằng \(BH\perp PQ\) nên H là trực tâm tam giác BPQ (đpcm)

 b) Ta có \(P=\sin^6\alpha+\cos^6\alpha\) 

\(=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha\cos^2\alpha\right)\)

\(=1.\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-3\sin^2\alpha\cos^2\alpha\right]\)

\(=1-3\sin^2\alpha\cos^2\alpha\)

\(\le1-3.\dfrac{\left(\sin^2\alpha+\cos^2\alpha\right)^2}{4}\)

\(=\dfrac{1}{4}\)

 Dấu "=" xảy ra \(\Leftrightarrow\sin\alpha=\cos\alpha\) \(\Leftrightarrow\alpha=45^o\) hay 2 dây AB, CD vuông góc với nhau.

Vậy \(min_P=\dfrac{1}{4}\)

c) Ta có \(\left\{{}\begin{matrix}EC.EB=EA^2\\FD.FB=FA^2\end{matrix}\right.\)  (hệ thức lượng trong tam giác vuông)

\(\Rightarrow EC.EB.FD.FB=\left(EA.FA\right)^2\)

\(\Rightarrow EC.FD.\left(EB.DB\right)=AB^4\)

\(\Rightarrow EC.FD.\left(EF.AB\right)=AB^4\)

\(\Rightarrow EC.FD.EF=AB^3=CD^3\) (đpcm)

Ta có \(EC.DF=AC.AD=BC.BD\)

\(\Rightarrow\dfrac{EC}{DF}=\dfrac{BC.BD}{DF^2}\) 

\(=\dfrac{BC}{DF}.\dfrac{BD}{DF}\) 

\(=\dfrac{BE}{BF}.\dfrac{AC}{DF}\) 

\(=\dfrac{BE}{BF}.\dfrac{AE}{AF}\)

\(=\left(\dfrac{BE}{BF}\right)^3\)

Ta có đpcm.

Bài khá căng đấy

20 tháng 7 2017

Hình mình ko tiện vẽ nên có thể hơi khó hiểu
a) xét t/g EAB có : P tđ AE, O tđ AB => OP//EB. mà EP vuông góc FB => PO vuông góc FB

xét t/g PFB có PO là đường cao, BA là đường cao, BA giao PO tại O

 => O là trực tâm t/g => FO vuông góc PB. Mà QH vuông góc PB => QH//OF
xét t/g AFO có Q tđ AF, QH//OF => H tđ OA (đpcm)

b) Xét t/g CBD có : BO= 1/2 CD (=R) , BO là trung tuyến => t/g CBD vuông tại B
Xét t/g EBF có: EBF = 90 độ, BA là đường cao => AB^2 = AE.AF
Ta có: AE.AF ≤ (AE+AF)^2/4
=> AB^2 ≤ EF^2/4
=> AB ≤ EF/2 (do AB, EF >0)

=> EF.AB/2 ≥ AB^2

=> diện tích EBF ≥ AB^2
lại có diện tích BPQ = PQ.AB/2= [(1/2.AE+ 1/2.AF).AB]/2= EF.AB/4= diện tích EBF/2

=> diện tích BPQ ≥ AB^2/2

dấu "=" <=> AE= AF => A tđ EF

           xét t/g EBF có BA là trung tuyến, BA là đường cao => t/d EBF cân tại B => BA là phân giác
xét t/g CBD có: BO là trung tuyến, BO là phân giác => t/g CBD cân tại B => BO là đường cao => AB vuông góc CD

Vậy t.g BPQ có dt nhỏ nhất <=> AB vuông góc CD

Oke, nếu thấy đúng thì cho mik xin 1 k nhé!

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
16 tháng 9 2015

(a)  Do P là trung điểm AE, O là trung điểm AB, suy ra PO là đường trung bình tam giác ABE. Do vậy mà OP song song với BE. Vì CD là đường kính nên \(CB\perp BF\to PO\perp BF.\) Vì \(EF\) là tiếp tuyến tại A của đường tròn nên \(BA\perp EF.\) Vậy O là trực tâm của tam giác BPQ. Thành thử OF vuông góc với BP. Do H là trực tâm tam giác BPQ nên QH vuông góc với BP. Do đó OF song song với QH. Mà Q là trung điểm AF, nên QH là đường trung bình tam giác AOF. Vậy H là trung điểm AO. 

(b)  Ta có \(S_{APQ}=\frac{1}{2}\cdot AB\cdot PQ=R\cdot PQ=R\cdot\frac{EF}{2}.\) Vậy diện tích tam giác APQ bé nhất khi và chỉ khi \(EF\) nhỏ nhất. Xét tam giác vuông BEF, theo hệ thức liên hệ giữa đường cao và hình chiếu, suy ra \(AB^2=AE\cdot AF\to AE\cdot AF=4R^2.\) Theo bẩt đẳng thức Cô-Si ta có \(EF=AE+AF\ge2\sqrt{AE\cdot AF}=2\sqrt{4R^2}=4R.\) Dấu bằng xảy ra khi và chỉ khi \(AE=AF\Leftrightarrow\Delta BEF\) vuông cân \(\Leftrightarrow BA\) là phân giác của góc \(\angle CBD\) \(\Leftrightarrow CD\perp AB.\) 

Vậy diện tích tam giác BPQ bé nhất khi và chỉ khi 2 đường kính AB,CD vuông góc với nhau. Khi đó giá trị bé nhất \(S_{APQ}=\frac{1}{2}AB\cdot EF=\frac{1}{2}\cdot2R\cdot4R=4R^2.\)

(c)  Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu ta có 

\(AE^2=CE\cdot BE,AF^2=BF\cdot DF\to\frac{AE^2}{AF^2}=\frac{CE\cdot BE}{BF\cdot DF}\to\frac{CE}{DF}=\frac{BF}{BE}\cdot\frac{AE^2}{AF^2}\)

Mặt khác, \(BE^2=EF\cdot EA,BF^2=FA\cdot FE\to\frac{BE^2}{BF^2}=\frac{EA}{FA}\to\frac{EA^2}{FA^2}=\frac{BE^4}{BF^4}.\)

Từ hai đẳng thức ta suy ra \(\frac{CE}{DF}=\frac{BF}{BE}\cdot\frac{BE^4}{BF^4}=\frac{BE^3}{BF^3}.\)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em