K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2020

Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))

Pt hoành độ giao điểm d và (P):

\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)

d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép

\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)

Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)

NV
7 tháng 2 2020

Gọi tiếp tuyến tại A có dạng \(y=ax+b\Rightarrow a=2\Rightarrow y=2x+b\)

Phương trình hoành độ giao điểm:

\(x^2=2x+b\Leftrightarrow x^2-2x-b=0\)

\(\Delta'=1+b=0\Rightarrow b=-1\Rightarrow y=2x-1\)

Khi đó hoành độ A là nghiệm \(x^2=2x-1\Leftrightarrow x=1\Rightarrow y=1\)

Vậy \(A\left(1;1\right)\)

Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

Vậy: (d1): y=3x+b

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Thay x=-2 và y=2 vào (d1), ta được:

\(3\cdot\left(-2\right)+b=2\)

\(\Leftrightarrow b=8\)(thỏa ĐK)

Vậy: (d1): y=3x+8

30 tháng 6 2021

để \(\left(d1\right)\) sogn song với \(\left(d\right)\)

\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)

\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\) 

=>\(\left(d1\right):y=3x+8\)

28 tháng 4 2015

đường thẳng y = ax+ b song song với đường thằng y = -x+ 5

=> a = -1 ; b khác 5

=> đường thẳng có dạng y = -x + b

gọi A là giao của đg thẳng y = -x + b và parabol
=> xA = 1 => yA = xA2 = 1 

A(1; 1) thuộc đg thẳng y = -x + b => yA = - xA + b =>b = 2 (thoả mãn)