Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng các...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2023

Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:

[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]

[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]

[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]

[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]

[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]

[\sqrt{(4m+7)^2(4m+16)}]

Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:

[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]

Từ đây, ta được phương trình bậc hai:

[(4m+7)^2(4m+16)=1 ]

Giải phương trình này, ta được hai nghiệm:

[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]

Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:

[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]

Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]

19 tháng 7 2018

ồ cuk khó nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

15 tháng 7 2015

ĐK: \(x^2-2x+2=\left(x-1\right)^2+1\ge0\text{ (đúng với mọi }x\in R\text{ )};\text{ }4m^2-4m-7\ge0\)

Ta có: \(VT=\sqrt{\left(x-1\right)^2+1}\ge1\)

+Nếu \(\frac{1+\sqrt{4m^2-4m-7}}{2}<1\Leftrightarrow\sqrt{4m^2-4m-7}<1\) thì \(VT\ge0>VP\) => pt vô nghiệm.

+Xét \(\frac{1+\sqrt{4m^2-4m-7}}{2}\ge1\Leftrightarrow\sqrt{4m^2-4m-7}\ge1\Leftrightarrow4m^2-4m-7\ge1\)

\(\Leftrightarrow4\left(m+1\right)\left(m-2\right)\ge0\)\(\Leftrightarrow m\le-1\text{ hoặc }m\ge2\)

\(pt\Leftrightarrow\left(x-1\right)^2=\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1\)

\(\Leftrightarrow x=\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)hoặc \(x=-\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)

Kết luận: ............................................

9 tháng 8 2016

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

9 tháng 8 2016

Câu b cũng xét hiệu tương tự cấu a

 

21 tháng 1 2016

nhìn rối mắt nhỉ 

ai đồng ý thì tick mk

21 tháng 1 2016

giai dc phuong trinh nay chac minh chet rui