Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
Phương trình hoành độ giao điểm là:
\(x^2-mx+2m-4=0\)
\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16=\left(m-4\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0
hay m<>4
Ta có: \(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=m^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Phương trình hoành độ giao điểm: \(x^2-mx+m-1=0\)
Do \(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
Hay d luôn có điểm chung với (P)
Để d và (P) tiếp xúc nhau \(\Leftrightarrow\) pt có nghiệm kép
\(\Rightarrow x_1=x_2\Rightarrow m-1=1\Rightarrow m=2\)
\(A=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
\(\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\Rightarrow-\frac{1}{2}\le A\le1\)
\(\Rightarrow A_{max}=1\) khi \(m=1\)
\(A_{min}=-\frac{1}{2}\) khi \(m=-2\)
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
a. Bạn tự giải
b. Pt hoành độ giao điểm: \(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow1=9\left(m-1\right)\Rightarrow m=\dfrac{10}{9}\)
TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow m-1=9.1\Rightarrow m=10\)
Pt hoành độ giao điểm: \(x^2-mx+m-1=0\)
\(a+b+c=1-m+m-1=0\) \(\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
\(A=\frac{2\left(m-1\right)+3}{1+\left(m-1\right)^2+2\left(m-1\right)+2}=\frac{2m+1}{m^2+2}\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\) \(\Rightarrow\frac{-1}{2}\le A\le1\)
\(\Rightarrow\left\{{}\begin{matrix}A_{max}=1\Rightarrow m=1\\A_{min}=\frac{-1}{2}\Rightarrow m=-2\end{matrix}\right.\)
bạn chỉ rõ đoạn -1A^2+A+1\(\ge\)0 được không