Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0
=>(m-2)(m+2)>0
hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
Theo đề, ta có:
\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow m-1=3\)
hay m=4
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
a) pt hoành độ giao điểm: \(x^2-mx-8=0\)
\(ac=1.-8=-8< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=-8\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-8< 0\Rightarrow x_1,x_2\) trái dấu
Ta có: \(x_1+\sqrt{x_2}=0\Rightarrow x_1=-\sqrt{x_2}< 0\Rightarrow x_2>0\)
Thế vào (2):\(-x_2\sqrt{x_2}=-8\Rightarrow x_2\sqrt{x_2}=8\Leftrightarrow\left(\sqrt{x_2}\right)^3=8\)
\(\Rightarrow\sqrt{x_2}=2\Rightarrow x_2=4\Rightarrow x_1=-2\Rightarrow x_1+x_2=2=m\)
a: PTHDGĐ là:
x^2-(m-1)x-(m^2+1)=0
a*c=-m^2-1<0
=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy
b: |x1|+|x2|=2căn 2
=>x1^2+x2^2+2|x1x2|=8
=>(x1+x2)^2-2x1x2+2|x1x2|=8
=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8
=>(m-1)^2+2(m^2+1)+2(m^2+1)=8
=>m^2-2m+1+4m^2+4=8
=>5m^2-2m-3=0
=>5m^2-5m+3m-3=0
=>(m-1)(5m+3)=0
=>m=1 hoặc m=-3/5
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx-m^2+4\)
=>\(x^2-2mx+m^2-4=0\)
\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)
Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)
=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)
=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)
=>\(4m^2-2m^2+8-6m-4=0\)
=>\(2m^2-6m+4=0\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình hoành độ giao điểm: \(x^2-mx+m-1=0\)
Do \(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
Hay d luôn có điểm chung với (P)
Để d và (P) tiếp xúc nhau \(\Leftrightarrow\) pt có nghiệm kép
\(\Rightarrow x_1=x_2\Rightarrow m-1=1\Rightarrow m=2\)
\(A=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
\(\Leftrightarrow A.m^2-2m+2A-1=0\)
\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\Rightarrow-\frac{1}{2}\le A\le1\)
\(\Rightarrow A_{max}=1\) khi \(m=1\)
\(A_{min}=-\frac{1}{2}\) khi \(m=-2\)