Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//y=3x+1 thì \(\left\{{}\begin{matrix}m-3=3\\m+2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=6\\m< >-1\end{matrix}\right.\)
=>m=6
b: (d): y=(m-3)x+m+2
=mx-3x+m+2
=m(x+1)-3x+2
Tọa độ điểm mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\cdot\left(-1\right)+2=3+2=5\end{matrix}\right.\)
c: y=(m-3)x+m+2
=>(m-3)x-y+m+2=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-3\right)+0\cdot\left(-1\right)+m+2\right|}{\sqrt{\left(m-3\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+2\right|}{\sqrt{\left(m-3\right)^2+1}}=1\)
=>\(\sqrt{\left(m-3\right)^2+1}=\left|m+2\right|\)
=>\(\sqrt{\left(m-3\right)^2+1}=\sqrt{\left(m+2\right)^2}\)
=>\(\left(m-3\right)^2+1=\left(m+2\right)^2\)
=>\(m^2-6m+9+1=m^2+4m+4\)
=>-6m+10=4m+4
=>-10m=-6
=>\(m=\dfrac{3}{5}\left(nhận\right)\)
Lời giải:
a. Gọi $I(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua. Ta có:
$y_0=(m+1)x_0-m+2, \forall m$
$m(x_0-1)+(x_0+2-y_0)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x_0-1=0\\ x_0+2-y_0=0\end{matrix}\right.\Leftrightarrow \Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=3\end{matrix}\right.\)
Vậy $I(1,3)$ là điểm cố định mà $d$ luôn đi qua với mọi $m$
b.
$A(0,a)$ là giao của $(d)$ với trục $Oy$
$B(b,0)$ là giao của $(d)$ với trục $Ox$
Nếu $m=-1$ thì $y=3$
Khi đó, khoảng cách từ $O$ đến $(d)$ là $3$
Nếu $m\neq -1$ thì:
$a=(m+1).0-m+2=-m+2$
$b=\frac{m-2}{m+1}$
Theo hệ thức lượng trong tam giác vuông thì khoảng cách từ $O$ đến $(d)$ là $h$ thì:
$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$
$=\frac{1}{(m-2)^2}+\frac{(m+1)^2}{(m-2)^2}=\frac{m^2+2m+2}{(m-2)^2}$
$\Rightarrow h=\frac{|m-2|}{\sqrt{m^2+2m+2}}$
\(1,y=\left(m-2\right)x+3+1\) \(\left(d\right)\)
\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)
\(\Rightarrow-1=m-2+m+1\)
\(\Rightarrow m=0\)
\(2,y=1-3x\left(d'\right)\)
Để: \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)
\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)
\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)
Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)
Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)
Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)
Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)
Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)
\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)
\(\Leftrightarrow m=\frac{2}{3}\)
1: Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m-2\right)+m+1=-1\)
=>2m-1=-1
=>m=0
Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)
2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)
=>m=-1
3:
(d): y=(m-2)x+m+1
=>(m-2)x-y+m+1=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)
=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)
=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)
=>\(m^2-4m+4+1=m^2+2m+1\)
=>-4m+5=2m+1
=>-6m=-4
=>m=2/3(nhận)
a: Thay x=2 và y=-1 vào (d), ta được:
2(m-2)+5=-1
=>2(m-2)=-6
=>m-2=-3
=>m=-1
b: (d): y=(m-2)x+5
=>(m-2)x-y-5=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-2\right)+0\left(-1\right)-5\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=3 thì \(\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}=3\)
=>\(\sqrt{\left(m-2\right)^2+1}=\dfrac{5}{3}\)
=>\(\left(m-2\right)^2+1=\dfrac{25}{9}\)
=>\(\left(m-2\right)^2=\dfrac{16}{9}\)
=>\(\left[{}\begin{matrix}m-2=\dfrac{4}{3}\\m-2=-\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{10}{3}\\m=\dfrac{2}{3}\end{matrix}\right.\)
a: Thay x=1 và y=3 vào d, ta được:
\(m-2+3m+1=3\)
\(\Leftrightarrow4m=4\)
hay m=1