K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

Phương pháp:

Đưa phương trình đường thẳng d về dạng tham số t, biểu diễn tọa độ điểm M theo tham số t.

Tính MA + 2MB + 3MC theo tham số t rồi lập luận để biểu thức đạt giá trị nhỏ nhất.

1 tháng 1 2020

16 tháng 9 2018

Đáp án C

4 tháng 7 2017

Đáp án B.

Phương pháp: Tính độ dài đoạn thẳng IM với I là tâm mặt cầu.

Tham số hóa tọa độ điểm M, sau đó dựa vào độ dài IM để tìm điểm M.

Cách giải : Mặt cầu (S) có tâm I(1;2; – 3) bán kính R =  3 3

Đặt MA = MB = MC = a

Tam giác MAB đều => AB = a

Tam giác MBC vuông tại M => BC = a 2

Tam giác MCA có  C M A ^ = 120 0 => AC = a 3

Xét tam giác ABC có  A B 2 + B C 2 = A C 2   => ABC vuông tại B

=>∆ABC ngoại tiếp đường tròn nhỏ có đường kính AC

Xét tam giác vuông IAM có:

30 tháng 11 2019

Tam giác ABC nội tiếp đường tròn nhỏ tâm H đường kính AC 

13 tháng 10 2017

15 tháng 11 2019

8 tháng 4 2017

Đáp án C

Tâm T ( − 5 ; − 1 ; − 7 )  , bán kính r = 24  

12 tháng 10 2018

Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀

Ta có 

Khi đó  3 I A ⇀ = 2 I B ⇀

Ta có:

 (vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )

Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I  nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)

Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) 

Suy ra M = d ∩ ( P )  nên tọa độ điểm M là nghiệm của hệ

Từ đó 

⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3

Chọn đáp án B.

26 tháng 2 2019

Đáp án D

Phương pháp:

+ Tìm tâm và bán kính của mặt cầu

+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M

+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu

Cách giải:

Mặt cầu (S) có tâm 

nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm  M  thuộc mặt cầu (S) sao cho khoảng cách từ M  đến mặt phẳng (P) là nhỏ nhất thì M  là giao điểm của đường thẳng d  đi qua I , nhận  n P → = 2 ; - 1 ; 2  làm VTCP với mặt cầu.

Phương trình đường thẳng 

Tọa độ giao điểm của đường thẳng d  và mặt cầu (S) thỏa mãn hệ phương trình