Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M(x0;y0) là điểm cố dịnh mà (d) luôn đi qua
Ta có: M(x0;y0) thuộc (d) : \(y_0=\left(3m-2\right)x_0+m-2\)
\(\Leftrightarrow3mx_0-2x_0+m-2-y_0=0\)
\(\Leftrightarrow m\left(3x_0+1\right)-\left(2x_0+y_0\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\2x_0+y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=\frac{-1}{3}\\2.\left(\frac{-1}{3}\right)+y_0=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=\frac{-1}{3}\\y_0=\frac{2}{3}\end{cases}}}\)
Vậy \(M\left(\frac{-1}{3};\frac{2}{3}\right)\) là điểm cố định mà (d) luôn đi qua với mọi giá trị của m
a. Xét A(1:6)
Đăt:+xA=1
+xB=6.
Thay xB, yB vào đồ thì hàm số y=mx+3
Ta có: 6=m*1+2
=>m=6-2
=>m=4
Mấy câu kia làm tương tự nhé!!!! :D
a, Từ giả thiết suy ra \(\left\{{}\begin{matrix}a+b=-2\\-2a+b=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow y=-\dfrac{5}{3}x-\dfrac{1}{3}\)
b,
c, Phương trình hoành độ giao điểm
\(-\dfrac{5}{3}x-\dfrac{1}{3}=x-3\Leftrightarrow x=1\Rightarrow y=-2\Rightarrow M\left(1;-2\right)\)
d1, \(tanMPQ=-\left(-\dfrac{5}{3}\right)=\dfrac{5}{3}\Rightarrow\widehat{MPQ}\approx59^o\)
d2, \(P\left(-\dfrac{1}{5};0\right);Q\left(3;0\right);M\left(1;-2\right)\)
Chu vi \(P=PQ+QM+MP=\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}\)
\(p=\dfrac{\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}}{2}\)
Diện tích \(S=\sqrt{p\left(p-\dfrac{16}{5}\right)\left(p-2\sqrt{2}\right)\left(p-\dfrac{2\sqrt{34}}{5}\right)}=...\)