K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2016

 

Ta có: \(U_{AB}=U_{AN}=\sqrt{3}U_{MN}=120V\)

\(U_R=120V\)

\(U_{AB}=U_{AN}\) do đó \(Z_L=U_{LC}\) hay góc hợp giữa \(U_{AB}\) và I bằng góc hợp bởi \(U_{AN}\) 

và I (cùng có R và r)

Mặt khác theo đầu bài của các góc bằng nhau ta suy ra được \(\overrightarrow{U_{AN}}\) là phân giác của góc hợp bởi \(U_{Lr}\) và I

 \(\overrightarrow{U_{AN}}=\overrightarrow{U_{Lr}}+\overrightarrow{U_R}\) 

Xét tam giác đã tịnh tiến \(\overrightarrow{U_R}\)  lên trên thì theo góc so le của 2 đường song song suy ra đây là tam giác cân

 \(U_{Lr}=U_R=120V\)

Từ đó suy ra góc nhỏ trong tam giác bằng \(\pi\text{ /}6\)

Do đó \(U_L=60\sqrt{3}V\)

\(Z_L=\frac{U_L}{I}=15\sqrt{6}\Omega\)

 

 

 

22 tháng 1 2015

Khi tụ xoay từ \(0^0 \rightarrow 180 ^0 : \) \(C_1 = 10pF \rightarrow C_2 = 500 pF\)

=> Tụ xoay từ \(0^0 \rightarrow 90^0: \) \(C_1 = 10pF \rightarrow C_x\)

Khi đó ta có: \((180-0) .(C_x-C_1) = (C_2-C_1).(90-0)\)

=> \(C_x-C_1 = \frac{(C_2-C_1)90}{180} = 245pF.\)

=> \(C_x = 255pF.\)

\(\lambda = c.2\pi \sqrt{LC} \approx 134,6m.\)

Chọn đáp án.C

13 tháng 5 2016

Đề nghị bạn viết Tiếng Việt có dấu nhé.

17 tháng 3 2016

Vì 2 tổng đại số của hiệu điện thể 2 đoạn bằng đúng hiệu điện thế của 2 đầu mạch nên 2 hiệu điện thế này cùng pha với nhau và cùng pha với hiệu điện thế toàn mạch

Do đó ta có

\(\frac{Z_{L_1}}{L_2}=\frac{Z_{L2}}{L_2}\)

Suy ra \(Z_{L_2}=\frac{\omega L_1}{R_1}R_2=50\sqrt{3}\Omega\)

Góc nghiêng so với cường độ dòng là

\(\tan\alpha=\frac{Z_1}{R_1}=\sqrt{3}\) suy ra \(\alpha=\pi\text{/}3\)

Tổng kháng toàn mạch sẽ là

\(Z=\frac{R_1+R_2}{\cos\pi\text{/}3}=300\Omega\)

Biểu thức cường độ dòng sẽ là

\(i=0,5\sqrt{2}\cos\left(100\pi t-\pi\text{/}3\right)A\)

17 tháng 3 2016

\(Z_L=100\sqrt 3\Omega\)

Vì \(Z_{AB}=Z_{AM}+Z_{MB}\)

Nên \(u_{AM}\) cùng pha với \(u_{MB}\)

\(\Rightarrow \tan\varphi_{AM}=\tan\varphi_{MB}\)

\(\Rightarrow \dfrac{Z_{L1}}{R_1}=\dfrac{Z_{L2}}{R_2}\)

\(\Rightarrow \dfrac{Z_{L1}}{100}=\dfrac{100\sqrt 3}{50}\)

\(\Rightarrow Z_{L1}=200\sqrt 3\Omega\)

Tổng trở \(Z=\sqrt{(100+50)^2+(200\sqrt 3+100\sqrt 3)^2}=150\sqrt{13}\Omega\)

Cường độ dòng điện \(I_0=\dfrac{150\sqrt 2}{150\sqrt {13}}=\sqrt{\dfrac{2}{13}}(A)\)

\(\tan\varphi=2\sqrt 3\)

\(\Rightarrow \varphi = 0,857\) rad

\(\Rightarrow i=\sqrt{\dfrac{2}{13}}\cos(100\pi t-0,857)(A)\)

 

30 tháng 3 2018

Chọn đáp án B

+ Ta có:  Điện áp hai đầu AN và MB vuông pha nhau

+ Mặt khác:

+ Lại có: 

18 tháng 1 2018

22 tháng 3 2019

Giải thích: Đáp án B

Phương pháp: Sử dụng giản đồ Frenen

Cách giải:

Ta có 

Độ lệch pha giữa u và i là φ: