Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )
a, do H \(\in\)phân giác \(\widehat{xOy}\)
mà HA\(\perp\)Ox, HB\(\perp\)Oy
=>HA=HB
=>\(\Delta HAB\)cân tại H (đpcm)
b,Ta có:
+\(\Delta OAH=\Delta OBH\left(ch-gn\right)\Rightarrow OA=OB\)
+\(\Delta OAC=\Delta OBC\left(c.g.c\right)\Rightarrow\widehat{OAC}=\widehat{OBC}\)
mà \(\widehat{xOy}+\widehat{OAC}=90^o\Rightarrow\widehat{xOy}+\widehat{OBC}=90^o\)
Xét \(\Delta OBM\)có \(\widehat{BOM}+\widehat{OBM}=90^o\Rightarrow\widehat{OMB}=90^o\Rightarrow BC\)\(\perp Ox\)
c,Xét \(\Delta AOB\)có \(\widehat{AOB}=60^o;AO=BO\Rightarrow\Delta AOB\)đều
Đường cao AD vừa là đường cao đồng thời là đường phân giác \(\widehat{OAB}\)
\(\Rightarrow\widehat{OAD}=30^o\)
Xét \(\Delta\)AOD vuông tại D có \(\widehat{OAD}=30^o\Rightarrow OD=\frac{1}{2}OA\Rightarrow OA=2OD\)
a/
Xét tg AOM có Ox đồng thời là đường cao và đường trung trực nên tg AOM cân tại O => OA=OM (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
Xét tg AON có Oy đồng thời là đường cao và đường trung trực nên tg AON cân tại O => OA=ON (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
=> OM=ON => tg OMN cân tại O
Đường trung trực của MN đồng thời cũng là đường cao của tg cân OMN xuất phát từ O (trong tg cân đường trung trực đồng thời là đường cao)
Mà O cố định nên đường trung trực của MN luôn đi qua điểm O cố định