Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lỗi không vẽ được nha bạn !!!
a) Xét tứ giác ABOC có :
ABO + ACO = 90O + 90O =180O nên tứ giác ABOC nội tiếp ( đpcm )
b) Xét \(\Delta\)MBN và \(\Delta\)MCB có :
M chung
MBN = MCB ( cùng chắn cung BN )
=> \(\Delta\)MBN ~ \(\Delta\)MCB ( g - g ) nên \(\frac{MB}{MC}=\frac{MN}{MB}\Leftrightarrow MB^2=MN.MC\left(đpcm\right)\)
c) Xét \(\Delta\)MAN và \(\Delta\)MCA có góc M chung
Vì M là trung điểm của AB nên MA = MB
Theo câu b ta có : MA2 = MN . MC <=> \(\frac{MA}{MN}=\frac{MC}{MC}\)
Do đó \(\Delta\)MAN ~ \(\Delta\)MCA ( c - g - c )
=> góc MAN =góc MCA = góc NCA ( 1 )
mà : góc NCA = góc NDC ( cùng chắn cung NC ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : góc MAN = góc NDC hay góc MAN = góc ADC (đpcm )
Xét tam giác MBN và tam giác MBC có
M là góc chung
Góc MBN = góc MCB (góc nt và góc tạo bởi tiếp tuyến và dây cùng chắn cung BN)
=> tam giác MBN đồng dạng tam giác MCB (g-g)
=> MB/MC = MN/MB
Bổ sung => MB^2=MC.MN