Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
=>(x-5)*3/10=1/5x+5
=>3/10x-3/2=1/5x+5
=>1/10x=5+3/2=6,5
=>0,1x=6,5
=>x=65
1,
đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)
2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)
2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))
A=1-\(\dfrac{1}{2017}\)
A=\(\dfrac{2016}{2017}\)
vậy A=\(\dfrac{2016}{2017}\)
1/
a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)
=> 2A = 3^120 - 1
=> A = (3 ^120 - 1)/2
b/ 2A + 1 = 27x
<=> 3^120 = 27x
<=> 27^40 = 27x
<=> x = 40
c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)
= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)
= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)
= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5
+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)
= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)
= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)
= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13
a) Giải:
Ta có: \(4n-5=4\left(n-3\right)+7\)
Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)
Nên ta có bảng sau:
\(n-3\) | \(n\) |
\(1\) | \(4\) |
\(-1\) | \(2\) |
\(-7\) | \(-4\) |
\(7\) | \(10\) |
Vậy \(n=\left\{2;4;-4;10\right\}\)
b) Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét:
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)
a) \(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{x+y}{2+3}\)
\(\dfrac{x}{2}=\dfrac{x+y}{2+3}-\dfrac{y}{3}\)
\(\dfrac{x}{2}=\dfrac{x+y}{5}-\dfrac{y}{3}\)
\(\dfrac{x}{2}=\dfrac{3\left(x+y\right)}{15}-\dfrac{5y}{15}\)
\(\dfrac{x}{2}=\dfrac{3x-2y}{15}\)
\(\Rightarrow15x=2\left(3x-2y\right)\)
\(15x=6x-4y\)
\(15x-6x=4y\)
\(9x=4y\)
(CÒN LẠI MÌNH KHÔNG BIẾT LÀM)
b) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{4}{y}\\ \)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{20}{5y}\)
\(\dfrac{x}{3}=\dfrac{1+4}{y+1}\)
\(\Rightarrow x\left(y+1\right)=15\)
(CÒN NHIÊU TỰ LÀM NHÉ)
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
a) \(\dfrac{x}{5}=\dfrac{6}{-10}\)
\(\Rightarrow\) (-10).x=5.6
\(\Leftrightarrow\) (-10).x=30
\(\Leftrightarrow x=30:\left(-10\right)\)
\(\Leftrightarrow\) x=(-3)
Vậy......................
b) \(\dfrac{x}{3}=\dfrac{4}{y}\)
\(\Rightarrow xy=3.4=12\)
Ta có: xy=12=1.12=12.1=2.6=6.2=3.4=4.3=(-1).(-12)=......( bạn tự ghi nốt)
\(\Rightarrow\)(x;y)=(1;12) (12;1) (2;6) (6;2) (3;4) (4;3) (-1;-12) (-12;-1) (-2;-6) (-6;-2) (-3;-4) (-4;-3)
Vậy.....................................
a: x/5=6/-10
=>x/5=-3/5
=>x=-3
b: =>xy=12
=>\(\left(x,y\right)\in\left\{\left(1;12\right);\left(12;1\right);\left(-1;-12\right);\left(-12;-1\right);\left(2;6\right);\left(6;2\right);\left(-2;-6\right);\left(-6;-2\right);\left(3;4\right);\left(4;3\right);\left(-3;-4\right);\left(-4;-3\right)\right\}\)
c: =>x/2=y/7=k
=>x=2k; y=7k
=>\(\left(x,y\right)\in\left\{\left(2k;7k\right);k\in Z\right\}\)
d: 2/x=x/8
=>x^2=16
=>x=4 hoặc x=-4