Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Suy ra: \(VT=\dfrac{bk^2\left(b+d\right)}{dk^2\left(d-b\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)
\(VP=\dfrac{b^2+bd}{d^2-bd}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)
\(\Rightarrow VT=VP\rightarrowđpcm.\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\dfrac{a^2+ac}{c^2-ac}=\dfrac{b^2k^2+bk\cdot dk}{d^2k^2-bk\cdot dk}=\dfrac{bk^2\cdot\left(b+d\right)}{dk^2\cdot\left(d-b\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(1\right)\)
\(\dfrac{b^2+bd}{d^2-bd}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2+ac}{c^2-ac}=\dfrac{b^2+bd}{d^2-bd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\). \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bdk^2}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)
\(\Rightarrowđpcm\)
đặt a/b=c/d=k
=>a=bk;c=dk rồi cứ thế thay lần lượt vào ac/bd;a^2+c^2/b^2+d^2
full hd :))
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)
Khi đó:
\(\dfrac{ac}{bd}=\dfrac{bt.dt}{bd}=\dfrac{t^2bd}{bd}=t^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2t^2+d^2t^2}{b^2+d^2}=\dfrac{t^2\left(b^2+d^2\right)}{b^2+d^2}=t^2\)
Vậy.....
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
a) Ta co: a/b = c/d= k
=> a=bk
c=dk
Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)
Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)
Tu (1) va (2)
=> a-b/a+b=c-d/c+d
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*) ta có:
\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)
Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) Từ (*) ta có:
\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)
Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
c) Từ (*) ta có:
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)
\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)
Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)
\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
Và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)
Tham khảo:Chứng minh a/b=c/d hoặc a/b=d/c biết (a^2+b^2)/(c^2+d^2)=ab/cd - An Nhiên
\(\text{Cho }\dfrac{a}{b}=\dfrac{d}{c}\text{ và }b,d\notin0\text{.CMR:}\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\text{Ta có:}\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\text{Lại có:}\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{\left(bd\right).k^2}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)