Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\left(dpcm\right)\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
a/b = b/c = c/d = (a + b + c)/(b + c + d)
--> ((a + b + c)/(b + c + d))^3 = a^3/b^3
Cần chứng minh:
a^3/b^3 = a/d
<=> a^3/b^3 = a^3/(a^2.d)
--> b^3 = a^2.d
Mà ad = bc (do a/b = c/d)
--> b^3 = abc
<=> b^2 = ac (luôn đúng do a/b = b/c)
--> đpcm
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\b=ck\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{b^3k^3+c^3k^3+d^3k^3}{b^3+c^3+d^3}=k^3\)
\(\dfrac{a}{d}=\dfrac{bk}{d}=\dfrac{ck^2}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)