K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=k\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=k^2\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}+\dfrac{2}{bc}+\dfrac{1}{c^2}+\dfrac{2}{ac}=k^2\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1\left(a+b+c\right)}{abc}=k^2\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=k^2-k\)

23 tháng 12 2019

làm đến thế thôi à cậu? Đề bài hỏi là tìm k mà.

a: ĐKXĐ: a<>0; a<>1; a<>-1

\(K=\dfrac{a^2-1}{a\left(a-1\right)}:\dfrac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)

\(=\dfrac{a+1}{a}\cdot\dfrac{\left(a-1\right)\left(a+1\right)}{a+1}=\dfrac{a^2-1}{a}\)

b: Khi a=1/2 thì K=(1/4-1):1/2=-3/4*2=-3/2

28 tháng 2 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=4\)

\(\Rightarrow2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=4\)

\(\Rightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=2\)

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

\(\Rightarrow\dfrac{c+a+b}{abc}=1\)

\(\Rightarrow a+b+c=abc\) 

 

19 tháng 12 2020

Theo đề ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\)

=>\(2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

=>\(\dfrac{c+a+b}{abc}=1\Rightarrow a+b+c=abc\)

=> Đpcm

19 tháng 12 2020

có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =2

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)= 4

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4.

⇒2 + \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4 (do \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)=2)

\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =2 

⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) =1

\(abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) =abc

⇔a +b +c =abc(đpcm)

26 tháng 11 2021

Ta có :

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)

\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)

\(=a+b+c\)

\(=abc\)

26 tháng 11 2021

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)

19 tháng 12 2020

Từ đkđb

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

19 tháng 12 2020

Hớ hớ bài này mình cũng làm rồi.

Ta có: (a+b+c)2=a2+b2+c2

<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2

<=>2(ab+bc+ca)=0

<=>ab+bc+ca=0

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)

=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)

=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)

=> Đpcm.

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)