K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Theo đề ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\)

=>\(2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

=>\(\dfrac{c+a+b}{abc}=1\Rightarrow a+b+c=abc\)

=> Đpcm

19 tháng 12 2020

có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =2

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)= 4

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4.

⇒2 + \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4 (do \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)=2)

\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =2 

⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) =1

\(abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) =abc

⇔a +b +c =abc(đpcm)

7 tháng 1 2019

Hỏi đáp Toán

7 tháng 1 2019

thanks

23 tháng 5 2017

Ta có:

\(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{ac}=\dfrac{2}{a}\)

\(\dfrac{1}{ab}+\dfrac{1}{b^2}+\dfrac{1}{bc}=\dfrac{2}{b}\)

\(\dfrac{1}{ac}+\dfrac{1}{bc}+\dfrac{1}{c^2}=\dfrac{2}{c}\)

Cộng vế với vế ta được:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{c+a+b}{abc}=2.2\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)

24 tháng 5 2017

Tui nghĩ phần đầu nên trình bày rõ hơn

7 tháng 1 2019

Cái này bình phương 1/a + 1/b + 1/c là ra 

7 tháng 1 2019

Bình phương 2 vế của pt (1) ta được

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\frac{a+b+c}{abc}=1\)

\(\Leftrightarrow a+b+c=abc\left(đpcm\right)\)

19 tháng 12 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

Thay \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) vào, ta được:

\(2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Rightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4-2=2\)

\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=2\)

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=1\)

\(\Rightarrow abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=abc\)

\(\Rightarrow\dfrac{abc}{ab}+\dfrac{abc}{bc}+\dfrac{abc}{ac}=abc\)

\(\Rightarrow a+b+c=abc\)

24 tháng 10 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=2^2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{c+a+b}{abc}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\) (do \(a+b+c=abc\))
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\). (đpcm).

24 tháng 10 2017

cảm ơn haha

14 tháng 1 2018

Ta có: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( BĐT AM )

Áp dụng BĐT Schwarz ta có:

\(P\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\ge\dfrac{3}{2}\)

Dấu " = " khi a = b = c = 1

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm