Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{ac}=\dfrac{2}{a}\)
\(\dfrac{1}{ab}+\dfrac{1}{b^2}+\dfrac{1}{bc}=\dfrac{2}{b}\)
\(\dfrac{1}{ac}+\dfrac{1}{bc}+\dfrac{1}{c^2}=\dfrac{2}{c}\)
Cộng vế với vế ta được:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{c+a+b}{abc}=2.2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
Thay \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) vào, ta được:
\(2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Rightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4-2=2\)
\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=2\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=1\)
\(\Rightarrow abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=abc\)
\(\Rightarrow\dfrac{abc}{ab}+\dfrac{abc}{bc}+\dfrac{abc}{ac}=abc\)
\(\Rightarrow a+b+c=abc\)
Có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=2^2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{c+a+b}{abc}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\) (do \(a+b+c=abc\))
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\). (đpcm).
Ta có: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( BĐT AM )
Áp dụng BĐT Schwarz ta có:
\(P\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\ge\dfrac{3}{2}\)
Dấu " = " khi a = b = c = 1
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
Theo đề ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\)
=>\(2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
=>\(\dfrac{c+a+b}{abc}=1\Rightarrow a+b+c=abc\)
=> Đpcm
có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =2
⇒\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)2 = 4
⇔\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4.
⇒2 + \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =4 (do \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)=2)
⇔\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\) =2
⇔ \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) =1
⇔\(abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) =abc
⇔a +b +c =abc(đpcm)