Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{ac}=\dfrac{2}{a}\)
\(\dfrac{1}{ab}+\dfrac{1}{b^2}+\dfrac{1}{bc}=\dfrac{2}{b}\)
\(\dfrac{1}{ac}+\dfrac{1}{bc}+\dfrac{1}{c^2}=\dfrac{2}{c}\)
Cộng vế với vế ta được:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{c+a+b}{abc}=2.2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)
Có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=2^2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{c+a+b}{abc}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\) (do \(a+b+c=abc\))
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\). (đpcm).
a) Ta có:
\(\dfrac{a^2}{a-1}\) \(\geq\) 4(*)
\(\Leftrightarrow\) a2 \(\geq\) 4.(a-1)
\(\Leftrightarrow\) a2 \(\geq\) 4a-4
\(\Leftrightarrow\) a2-4a+4 \(\geq\) 0
\(\Leftrightarrow\) (a-2)2 \(\geq\) 0(**)
Ta có BĐT(**) luôn đúng nên suy ra BĐT(*) luôn đúng
Dấu = xảy ra khi và chỉ khi a=2
B) Áp dụng câu a ta được:
\(\dfrac{4a^2}{a-1}=4.\dfrac{a^2}{a-1}\) \(\geq\) 4.4=16(1)
\(\dfrac{5b^2}{b-1}=5.\dfrac{b^2}{b-1}\) \(\geq\) 5.4=20(2)
\(\dfrac{3c^2}{c-1}=3.\dfrac{c^2}{c-1}\) \(\geq\) 3.4=12(3)
Cộng các BĐT(1),(2),(3) ta được
\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\) \(\geq\) 16+20+12=48
Dấu = xảy ra khi và chỉ khi a=b=c=2
Đặt A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\)
Áp dụng BĐT đã CM ta có:
A= \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 4.4+8.4+12.4=16+32+48=96
\(\Rightarrow\) \(\dfrac{4a^2}{a-1}+\dfrac{8b^2}{b-1}+\dfrac{12c^2}{c-1}\) \(\geq\) 96
hay A \(\geq\) 96
Dấu = xảy ra khi và chỉ khi a=b=c=2
Vậy MinA=96 khi và chỉ khi a=b=c=2
a)
Ta có :
\(\dfrac{a^2}{a-1}\ge4\) (1)
\(\Leftrightarrow\dfrac{a^2}{a-1}\ge\dfrac{4a-4}{a-1}\left(\forall a-1\ne0\right)\)
\(\Leftrightarrow a^2\ge4a-4\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\ge0\)(luôn đúng) (2)
BĐT (2) đúng suy ra BĐT (1) luôn đúng
Dấu bằng xảy ra chỉ khi và khi a = 2
Ta có: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( BĐT AM )
Áp dụng BĐT Schwarz ta có:
\(P\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\ge\dfrac{3}{2}\)
Dấu " = " khi a = b = c = 1
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{-1}{c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\dfrac{-1}{c^3}\) hay \(\dfrac{1}{a^3}+\dfrac{1}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{b^3}=\dfrac{-1}{c^3}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{3}{abc}\)
\(a^2b^2c^2.\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{3}{abc}.a^2b^2c^2\)
\(\Leftrightarrow\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}=3abc\) hay\(M=3abc\left(đpcm\right)\)
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
Thay \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) vào, ta được:
\(2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Rightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4-2=2\)
\(\Rightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=2\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=1\)
\(\Rightarrow abc\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=abc\)
\(\Rightarrow\dfrac{abc}{ab}+\dfrac{abc}{bc}+\dfrac{abc}{ac}=abc\)
\(\Rightarrow a+b+c=abc\)