Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\)vuông cân tại A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}=45^o\end{cases}}\)
\(\widehat{BAD}\)và \(\widehat{DAC}\)là 2 góc phụ nhau
\(\widehat{NAC}\)và \(\widehat{DAC}\)là 2 góc phụ nhau
\(\Rightarrow\widehat{BAD}=\widehat{NAC}\)
Ta có
\(\widehat{DCA}\)phụ \(\widehat{ACN}\)mà \(\widehat{C}=45^0\)
\(\Rightarrow\widehat{ACN}=45^0\)
\(\Rightarrow\widehat{ACN}=\widehat{B}=45^0\)
Xét \(\Delta AMB\)và \(\Delta ADC\)có:
\(\widehat{ACN}=\widehat{B}=45^0\)
AB=AC
\(\widehat{BAD}=\widehat{CAN}\)
\(\Rightarrow\Delta AMB=\Delta ADC\)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
Do đó: ΔABE=ΔACD
c: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
Ta có: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC(1)
=>AO đi qua trung điểm của BC
d: Xét ΔABI vuông tại B vàΔACI vuông tại I có
AI chug
AB=AC
Do đó: ΔABI=ΔACI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,O,I thẳng hàng
à quên , nối M với N nhé.
giải
vì MA = BM nên \(\Delta ABM\)cân tại M \(\Rightarrow\)\(\widehat{BAM}=\widehat{MBA}\)
vì Bx // AM nên \(\widehat{MAB}+\widehat{ABN}=180^o\)hay \(\widehat{MBA}+\widehat{ABN}=180^o\)( 1 )
vì \(\Delta ABC\)cân tại A nên \(\widehat{ABM}=\widehat{ACB}\)
Ta có : \(\widehat{ACB}+\widehat{ACM}=180^o\)hay \(\widehat{ABM}+\widehat{ACM}=180^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\widehat{ABN}=\widehat{ACM}\)
Xét \(\Delta ABN\)và \(\Delta ACM\)có :
AB = AC ( gt )
\(\widehat{ABN}=\widehat{ACM}\)( cmt )
BN = CM ( gt )
Suy ra : \(\Delta ABN\)= \(\Delta ACM\)( c.g.c )
\(\Rightarrow\)AN = AM
\(\Rightarrow\)\(\Delta AMN\)cân tại A
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
2. Để \(A=\frac{x-5}{x-3}=1-\frac{2}{x-3}.\)đạt giá trị nguyên thì
2\(⋮\)x-3=> x-3\(\in\){1,2,-1,-2}
=> x\(\in\){4,5,2,1}